Cosmological Unification of String Theories

Simeon Hellerman

based on :

hep-th/0405041, S.H.
hep-th/0409071, S.H. and Xiao Liu
hep-th/0611317, S.H. and Ian Swanson
hep-th/0612051, S.H. and Ian Swanson
hep-th/0612116, S.H. and Ian Swanson
arXiv:0705.0980, S.H. and Ian Swanson
arXiv:0709.2166, S.H. and Ian Swanson
arXiv:0710.1628, S.H. and Ian Swanson

LPTHE, Paris, 5 Feb 2008

Outline

Overview of quintessent cosmology and linear dilaton backgrounds

Supercritical string theory: spacetime effective action

Stability in time-dependent backgrounds

Bosonic string solutions with nonzero tachyon

Dimension-changing solutions in the type 0 string

Transitions from type 0 to bosonic string theory

Conclusions

Preface

It would be useful to understand how strongly nonsupersymmetric string theories - such as the bosonic string, as well as string theories in supercritical dimensions - are related to the more supersymmetric versions of string theory.

Preface

It would be useful to understand how strongly nonsupersymmetric string theories - such as the bosonic string, as well as string theories in supercritical dimensions - are related to the more supersymmetric versions of string theory.

In this talk I will describe a class of α^{\prime}-exact cosmological solutions of string theory that interpolate in time between theories with different numbers of spacetime dimensions and different amounts of worldsheet and spacetime supersymmetry.

Preface

It would be useful to understand how strongly nonsupersymmetric string theories - such as the bosonic string, as well as string theories in supercritical dimensions - are related to the more supersymmetric versions of string theory.

In this talk I will describe a class of α^{\prime}-exact cosmological solutions of string theory that interpolate in time between theories with different numbers of spacetime dimensions and different amounts of worldsheet and spacetime supersymmetry.

These cosmologies connect supercritical string theories to the more familiar string duality web in ten dimensions.

Preface

It would be useful to understand how strongly nonsupersymmetric string theories - such as the bosonic string, as well as string theories in supercritical dimensions - are related to the more supersymmetric versions of string theory.

In this talk I will describe a class of α^{\prime}-exact cosmological solutions of string theory that interpolate in time between theories with different numbers of spacetime dimensions and different amounts of worldsheet and spacetime supersymmetry.

These cosmologies connect supercritical string theories to the more familiar string duality web in ten dimensions.

They also provide a precise link between supersymmetric and purely bosonic string theory.

Outline

Overview of quintessent cosmology and linear dilaton backgrounds

Supercritical string theory: spacetime effective action

Stability in time-dependent backgrounds

Bosonic string solutions with nonzero tachyon

Dimension-changing solutions in the type 0 string

Transitions from type 0 to bosonic string theory

Conclusions

Quintessent cosmology in D dimensions

Let's start with a very general class of cosmological models.

Quintessent cosmology in D dimensions

Let's start with a very general class of cosmological models.
The metric for a spatially flat $(k=0)$ FRW cosmology is

$$
d s^{2}=-d t^{2}+a(t)^{2} d x^{i} d x^{i}
$$

where $i=1, \cdots, D-1$.

Quintessent cosmology in D dimensions

Let's start with a very general class of cosmological models.
The metric for a spatially flat $(k=0)$ FRW cosmology is

$$
d s^{2}=-d t^{2}+a(t)^{2} d x^{i} d x^{i}
$$

where $i=1, \cdots, D-1$.
The equation of motion for the scale factor $a(t)$:

$$
\frac{\ddot{a}}{a}=-\frac{D-3+w(D-1)}{(D-1)(D-2)} \rho
$$

where $w \equiv p / \rho$ is the state equation.

Quintessent cosmology in D dimensions

Let's start with a very general class of cosmological models.
The metric for a spatially flat $(k=0)$ FRW cosmology is

$$
d s^{2}=-d t^{2}+a(t)^{2} d x^{i} d x^{i}
$$

where $i=1, \cdots, D-1$.
The equation of motion for the scale factor $a(t)$:

$$
\frac{\ddot{a}}{a}=-\frac{D-3+w(D-1)}{(D-1)(D-2)} \rho
$$

where $w \equiv p / \rho$ is the state equation.
Consider a theory of a real scalar field ϕ with Lagrangian

$$
\mathcal{L}_{\phi}=\frac{1}{\kappa^{2}} \sqrt{-\operatorname{det} G}\left[\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\mathcal{V}(\phi)\right]
$$

where

$$
\mathcal{V}(\phi) \equiv c \exp (\gamma \phi), \quad c, \gamma>0
$$

Linear dilaton background

At this point, we adopt the ansatz that our solution exhibits a constant equation of state w.

Linear dilaton background

At this point, we adopt the ansatz that our solution exhibits a constant equation of state w.
It follows that $\dot{\phi}^{2}, H^{2}$ and \mathcal{V} all scale as t^{-2}, so we find the general expressions

$$
\begin{aligned}
\phi(t) & =\lambda \log \left(t / t_{1}\right) \\
a(t) & =a_{0}\left(\frac{t}{t_{0}}\right)^{\alpha}
\end{aligned}
$$

for some α, λ.

Linear dilaton background

At this point, we adopt the ansatz that our solution exhibits a constant equation of state w.
It follows that $\dot{\phi}^{2}, H^{2}$ and \mathcal{V} all scale as t^{-2}, so we find the general expressions

$$
\begin{aligned}
\phi(t) & =\lambda \log \left(t / t_{1}\right) \\
a(t) & =a_{0}\left(\frac{t}{t_{0}}\right)^{\alpha}
\end{aligned}
$$

for some α, λ.
This amounts to a direct relation between \dot{a} and a, which can be integrated to yield the following:

$$
\begin{aligned}
\alpha & =\frac{2}{(1+w)(D-1)} \\
\gamma^{2} & =\frac{2(D-1)(w+1)}{D-2}
\end{aligned}
$$

Linear dilaton background

Because $c>0$, the energy density ρ is positive, and the cosmological scale accelerates as a function of FRW time if $-1 \leq w<w_{\text {crit }}$, where

$$
w_{\text {crit }}=-\frac{D-3}{D-1}
$$

in D spacetime dimensions.

Linear dilaton background

Because $c>0$, the energy density ρ is positive, and the cosmological scale accelerates as a function of FRW time if $-1 \leq w<w_{\text {crit }}$, where

$$
w_{\text {crit }}=-\frac{D-3}{D-1}
$$

in D spacetime dimensions.
The global causal structure of the solution therefore depends on whether w is less than, greater than, or equal to the critical value $w_{\text {crit }}$.

Linear dilaton background

Because $c>0$, the energy density ρ is positive, and the cosmological scale accelerates as a function of FRW time if $-1 \leq w<w_{\text {crit }}$, where

$$
w_{\text {crit }}=-\frac{D-3}{D-1}
$$

in D spacetime dimensions.
The global causal structure of the solution therefore depends on whether w is less than, greater than, or equal to the critical value $W_{\text {crit }}$.

The spatial slice $t=0$ defines an initial singularity in all three cases.

Linear dilaton background

Because $c>0$, the energy density ρ is positive, and the cosmological scale accelerates as a function of FRW time if $-1 \leq w<w_{\text {crit }}$, where

$$
w_{\mathrm{crit}}=-\frac{D-3}{D-1}
$$

in D spacetime dimensions.
The global causal structure of the solution therefore depends on whether w is less than, greater than, or equal to the critical value $W_{\text {crit }}$.

The spatial slice $t=0$ defines an initial singularity in all three cases.

The precise nature of this singularity and the nature of the asymptotic future $t \rightarrow+\infty$, however, depend on the state equation of the cosmology.

Linear dilaton background

We can rewrite the metric in a canonical form for a conformally flat spacetime. We define a new time coordinate \bar{t} via the equation

$$
\bar{t} \equiv\left(\frac{(D-1)(1+w)}{(D-1) w+(D-3)} t_{0}^{\frac{2}{(D-1)(1+w)}} a_{0}^{-1}\right) t^{\frac{(D-1) w+(D-3)}{(D-1)(1+w)}}
$$

Linear dilaton background

We can rewrite the metric in a canonical form for a conformally flat spacetime. We define a new time coordinate \bar{t} via the equation

$$
\bar{t} \equiv\left(\frac{(D-1)(1+w)}{(D-1) w+(D-3)} t_{0}^{\frac{2}{(D-1)(1+w)}} a_{0}^{-1}\right) t^{\frac{(D-1) w+(D-3)}{(D-1)(1+w)}}
$$

In these coordinates, the metric takes the form

$$
d s^{2}=\omega(\bar{t})^{2}\left[-d \bar{t}^{2}+d x^{i} d x^{i}\right]=\omega(\bar{t})^{2}\left[-d \bar{t}^{2}+d r^{2}+r^{D-2} d \Omega_{D-2}^{2}\right]
$$

where we have defined

$$
\begin{aligned}
\omega(\bar{t}) & \equiv I\left(\frac{(D-1) w+(D-3)}{(D-1)(1+w)} \bar{t}\right)^{\frac{2}{(D-1) w+(D-3)}} \\
I & \equiv a_{0}\left(\frac{a_{0}}{t_{0}}\right)^{\frac{2}{(D-1) w+(D-3)}}
\end{aligned}
$$

Linear dilaton background

To construct Penrose diagrams, one ignores the ($D-2$)-sphere fibered over each diagram and conformally compactifies the (r, t) plane using the transformation

$$
r \equiv \frac{\sin \chi}{\cos \chi+\cos \tau} \quad \bar{t} \equiv \frac{\sin \tau}{\cos \chi+\cos \tau}
$$

Linear dilaton background

To construct Penrose diagrams, one ignores the ($D-2$)-sphere fibered over each diagram and conformally compactifies the (r, t) plane using the transformation

$$
r \equiv \frac{\sin \chi}{\cos \chi+\cos \tau} \quad \bar{t} \equiv \frac{\sin \tau}{\cos \chi+\cos \tau}
$$

In these coordinates, the metric on the (r, t) plane becomes

$$
\begin{aligned}
d s^{2}= & \frac{l^{2}}{4} \frac{(\sin |\tau|)^{2 \Delta}}{\left[\cos \left(\frac{\chi+\tau}{2}\right) \cos \left(\frac{\chi-\tau}{2}\right)\right]^{2+2 \Delta}}\left|\frac{(D-1) w+(D-3)}{2(D-1)(1+w)}\right|^{2 \Delta} \\
& \times\left(-d \tau^{2}+d \chi^{2}\right)
\end{aligned}
$$

with

$$
\Delta \equiv \frac{2}{(D-1) w+(D-3)}
$$

Linear dilaton background

For $-1<w<w_{\text {crit }}$, the constant Δ is negative and the range of the τ and χ coordinates is

$$
\tau \in[-\pi, 0] \quad \chi \in[0, \tau+\pi] \quad \text { (accelerating universe). }
$$

For $w>w_{\text {crit }}$, the quantity Δ becomes positive, and we have

$$
\tau \in[0, \pi] \quad \chi \in[0, \pi-\tau] \quad \text { (decelerating universe). }
$$

Linear dilaton background

Penrose diagram of the decelerating universe ($w>w_{\text {crit }}$). The initial singularity is spacelike, and the future boundary is null.

Linear dilaton background

Penrose diagram of the accelerating ($-1<w<w_{\text {crit }}$) universe. The initial singularity is null, and the future spacelike boundary is obscured from observers by a horizon.

Linear dilaton background

Penrose diagram of the universe with critical equation of state ($w=w_{\text {crit }}$).

Linear dilaton background

Penrose diagram of the universe with critical equation of state ($w=w_{\text {crit }}$). The initial singularity is null, as is the future boundary. It is conformally equivalent to Minkowski space (conventional big bang, asymptotic infinity, and ordinary final states).

Outline

Overview of quintessent cosmology and linear dilaton backgrounds

Supercritical string theory: spacetime effective action

Stability in time-dependent backgrounds

Bosonic string solutions with nonzero tachyon

Dimension-changing solutions in the type 0 string

Transitions from type 0 to bosonic string theory

Conclusions

Supercritical string theory

For the bosonic string in $D>26$, the effective action for the metric and dilaton appears as
$S_{\mathrm{eff}}=\frac{1}{2 \kappa^{2}} \int d^{D} \times \sqrt{-\operatorname{det} G^{(S)}} \exp (-2 \Phi)\left[-\frac{D-26}{3 \alpha^{\prime}}+R^{(S)}+4(\partial \Phi)^{2}\right]$

Supercritical string theory

For the bosonic string in $D>26$, the effective action for the metric and dilaton appears as
$S_{\mathrm{eff}}=\frac{1}{2 \kappa^{2}} \int d^{D} \times \sqrt{-\operatorname{det} G^{(S)}} \exp (-2 \Phi)\left[-\frac{D-26}{3 \alpha^{\prime}}+R^{(S)}+4(\partial \Phi)^{2}\right]$

Higher dimension terms are dropped: such terms in the tree-level action are suppressed by powers of $\alpha^{\prime}=1 /\left(2 \pi T_{\text {string }}\right)$, where $T_{\text {string }}$ is the fundamental string tension.

Supercritical string theory

For the bosonic string in $D>26$, the effective action for the metric and dilaton appears as
$S_{\mathrm{eff}}=\frac{1}{2 \kappa^{2}} \int d^{D} \times \sqrt{-\operatorname{det} G^{(S)}} \exp (-2 \Phi)\left[-\frac{D-26}{3 \alpha^{\prime}}+R^{(S)}+4(\partial \Phi)^{2}\right]$

Higher dimension terms are dropped: such terms in the tree-level action are suppressed by powers of $\alpha^{\prime}=1 /\left(2 \pi T_{\text {string }}\right)$, where $T_{\text {string }}$ is the fundamental string tension.

We may rewrite the action in terms of the Einstein metric using the field redefinition

$$
G_{\mu \nu}^{(S)}=\exp \left(\frac{4 \Phi}{D-2}\right) G_{\mu \nu}^{(E)}
$$

We may also rescale $\Phi \rightarrow \frac{1}{2} \sqrt{D-2} \phi \ldots$

Supercritical string theory

We obtain:

$$
S_{\mathrm{eff}}=\frac{1}{2 \kappa^{2}} \int d^{D} X \sqrt{-\operatorname{det} G^{(E)}}\left[-\frac{2(D-26)}{3 \alpha^{\prime}} \exp \left(\frac{2 \phi}{\sqrt{D-2}}\right)+R^{(E)}-(\partial \phi)^{2}\right]
$$

Supercritical string theory

We obtain:

$$
S_{\mathrm{eff}}=\frac{1}{2 \kappa^{2}} \int d^{D} X \sqrt{-\operatorname{det} G^{(E)}}\left[-\frac{2(D-26)}{3 \alpha^{\prime}} \exp \left(\frac{2 \phi}{\sqrt{D-2}}\right)+R^{(E)}-(\partial \phi)^{2}\right]
$$

This is the action for a quintessent cosmology, with coefficients now defined by the following values:

$$
\gamma=\frac{2}{\sqrt{D-2}} \quad c=\frac{D-26}{3 \alpha^{\prime}}
$$

Supercritical string theory

We obtain:

$$
S_{\mathrm{eff}}=\frac{1}{2 \kappa^{2}} \int d^{D} X \sqrt{-\operatorname{det} G^{(E)}}\left[-\frac{2(D-26)}{3 \alpha^{\prime}} \exp \left(\frac{2 \phi}{\sqrt{D-2}}\right)+R^{(E)}-(\partial \phi)^{2}\right]
$$

This is the action for a quintessent cosmology, with coefficients now defined by the following values:

$$
\gamma=\frac{2}{\sqrt{D-2}} \quad c=\frac{D-26}{3 \alpha^{\prime}}
$$

We therefore recover a quintessent solution with equation of state

$$
w=-\frac{D-3}{D-1}
$$

Supercritical string theory

The tree-level potential of the string theory gives rise to an equation of state at the boundary between accelerating and decelerating cosmological backgrounds.

Supercritical string theory

The tree-level potential of the string theory gives rise to an equation of state at the boundary between accelerating and decelerating cosmological backgrounds.

The resulting spacetime is globally conformally equivalent to Minkowski space.

Supercritical string theory

The tree-level potential of the string theory gives rise to an equation of state at the boundary between accelerating and decelerating cosmological backgrounds.

The resulting spacetime is globally conformally equivalent to Minkowski space.

In retrospect, this must have been the case: The worldsheet theory of the string in this background is defined to have a target space with string frame metric $\eta_{\mu \nu}$, and coordinates X^{μ} that are infinite in extent.

Supercritical string theory

The tree-level potential of the string theory gives rise to an equation of state at the boundary between accelerating and decelerating cosmological backgrounds.

The resulting spacetime is globally conformally equivalent to Minkowski space.

In retrospect, this must have been the case: The worldsheet theory of the string in this background is defined to have a target space with string frame metric $\eta_{\mu \nu}$, and coordinates X^{μ} that are infinite in extent.

The equation of state $w=-\frac{D-3}{D-1}$ with positive energy also describes negative curvature dominated cosmology.

Supercritical string theory

The tree-level potential of the string theory gives rise to an equation of state at the boundary between accelerating and decelerating cosmological backgrounds.

The resulting spacetime is globally conformally equivalent to Minkowski space.

In retrospect, this must have been the case: The worldsheet theory of the string in this background is defined to have a target space with string frame metric $\eta_{\mu \nu}$, and coordinates X^{μ} that are infinite in extent.

The equation of state $w=-\frac{D-3}{D-1}$ with positive energy also describes negative curvature dominated cosmology.

Maximal SUSY breaking at weak coupling?

Supercritical string theory

The general quintessent solution is of the form

$$
\begin{aligned}
\Phi & =\Phi_{0}-\frac{D-2}{2} \ln \left(\frac{t}{t_{0}}\right) \\
a & =\frac{a_{0}}{t_{0}} t
\end{aligned}
$$

Supercritical string theory

The general quintessent solution is of the form

$$
\begin{aligned}
\Phi & =\Phi_{0}-\frac{D-2}{2} \ln \left(\frac{t}{t_{0}}\right) \\
a & =\frac{a_{0}}{t_{0}} t
\end{aligned}
$$

We have the relation

$$
t_{\mathrm{FRW}}=t_{0} \exp \left(+\frac{2 q t_{\mathrm{conf}}}{D-2}\right)
$$

Supercritical string theory

The general quintessent solution is of the form

$$
\begin{aligned}
\Phi & =\Phi_{0}-\frac{D-2}{2} \ln \left(\frac{t}{t_{0}}\right) \\
a & =\frac{a_{0}}{t_{0}} t
\end{aligned}
$$

We have the relation

$$
t_{\mathrm{FRW}}=t_{0} \exp \left(+\frac{2 q t_{\mathrm{conf}}}{D-2}\right)
$$

So when we move to coordinates in which the metric is manifestly conformally flat and we decanonicalize the scalar field, we find that the dilaton is logarithmic as a function of FRW time, and linear as a function of conformal time:

$$
\begin{align*}
d s^{2} & =\frac{a_{0}^{2}}{t_{0}^{2}} t^{2}\left(-d t_{\mathrm{conf}}^{2}+d x^{i} d x^{i}\right)=a^{2} \eta_{\mu \nu} d x^{\mu} d x^{\nu} \tag{1}\\
\Phi & =\Phi_{0}-q t_{\mathrm{conf}}
\end{align*}
$$

Outline

Overview of quintessent cosmology and linear dilaton backgrounds

Supercritical string theory: spacetime effective action

Stability in time-dependent backgrounds

Bosonic string solutions with nonzero tachyon

Dimension-changing solutions in the type 0 string

Transitions from type 0 to bosonic string theory

Conclusions

Stability

In time-dependent backgrounds there is no obvious or
natural definition of stability.

Stability

In time-dependent backgrounds there is no obvious or natural definition of stability.

One must take into account the coupling of the background fields to the string modes, which is suppressed by a factor of the string coupling $g_{s} \sim e^{\phi}$.

Stability

> In time-dependent backgrounds there is no obvious or natural definition of stability.

One must take into account the coupling of the background fields to the string modes, which is suppressed by a factor of the string coupling $g_{s} \sim e^{\phi}$.

Exponentially growing modes will have decreasing effect on the remaining degrees of freedom in the theory if they grow more slowly than g_{s}^{-1}.

Stability

In time-dependent backgrounds there is no obvious or natural definition of stability.

One must take into account the coupling of the background fields to the string modes, which is suppressed by a factor of the string coupling $g_{s} \sim e^{\phi}$.

Exponentially growing modes will have decreasing effect on the remaining degrees of freedom in the theory if they grow more slowly than g_{s}^{-1}.

A useful definition, therefore, is that unstable modes must grow faster than g_{s}^{-1} at late times.

Stability

Consider a massless scalar coupled to the string:

$$
\mathcal{L}_{\sigma}=-\frac{1}{2 \kappa^{2}} \sqrt{-\operatorname{det} G^{(S)}} e^{-2 \Phi}(\partial \sigma)^{2}=-\frac{1}{2 \kappa^{2}} \sqrt{-\operatorname{det} G^{(E)}}(\partial \sigma)^{2}
$$

Stability

Consider a massless scalar coupled to the string:

$$
\mathcal{L}_{\sigma}=-\frac{1}{2 \kappa^{2}} \sqrt{-\operatorname{det} G^{(S)}} e^{-2 \Phi}(\partial \sigma)^{2}=-\frac{1}{2 \kappa^{2}} \sqrt{-\operatorname{det} G^{(E)}}(\partial \sigma)^{2}
$$

The scalar field has solutions of the form

$$
\sigma=\sigma_{\infty}-\xi t^{-(D-2)}
$$

where σ_{∞} and ξ are constants of motion that can take arbitrary real values.

Stability

Consider a massless scalar coupled to the string:

$$
\mathcal{L}_{\sigma}=-\frac{1}{2 \kappa^{2}} \sqrt{-\operatorname{det} G^{(S)}} e^{-2 \Phi}(\partial \sigma)^{2}=-\frac{1}{2 \kappa^{2}} \sqrt{-\operatorname{det} G^{(E)}}(\partial \sigma)^{2}
$$

The scalar field has solutions of the form

$$
\sigma=\sigma_{\infty}-\xi t^{-(D-2)}
$$

where σ_{∞} and ξ are constants of motion that can take arbitrary real values.

The modes of the field σ asymptote to the constant value σ_{∞} as $t \rightarrow \infty$.

Stability

Consider a massless scalar coupled to the string:

$$
\mathcal{L}_{\sigma}=-\frac{1}{2 \kappa^{2}} \sqrt{-\operatorname{det} G^{(S)}} e^{-2 \Phi}(\partial \sigma)^{2}=-\frac{1}{2 \kappa^{2}} \sqrt{-\operatorname{det} G^{(E)}}(\partial \sigma)^{2}
$$

The scalar field has solutions of the form

$$
\sigma=\sigma_{\infty}-\xi t^{-(D-2)}
$$

where σ_{∞} and ξ are constants of motion that can take arbitrary real values.

The modes of the field σ asymptote to the constant value σ_{∞} as $t \rightarrow \infty$.

From the point of view of the Einstein frame, this effect is due to Hubble friction; in the string frame this behavior is understood to be caused by the drag force arising from the interaction between σ and the linear dilaton.

Stability

Quanta of the string are necessarily coupled to the flat metric. To recover fluctuations in such a form we must introduce a rescaled field $\tilde{\sigma}$:

$$
\tilde{\sigma} \equiv e^{-\Phi} \sigma
$$

Stability

Quanta of the string are necessarily coupled to the flat metric. To recover fluctuations in such a form we must introduce a rescaled field $\tilde{\sigma}$:

$$
\tilde{\sigma} \equiv e^{-\Phi} \sigma
$$

This induces a mass term for the rescaled field that represents a proper quantum of string:
$e^{-2 \Phi}(\partial \sigma)^{2}=(\partial \tilde{\sigma})^{2}+\tilde{\sigma}^{2}(\partial \Phi)^{2}+2 \tilde{\sigma}(\partial \tilde{\sigma})\left[(\partial \Phi)_{\text {background }}+(\partial \Phi)_{\text {fluctuation }}\right]$

Stability

Quanta of the string are necessarily coupled to the flat metric. To recover fluctuations in such a form we must introduce a rescaled field $\tilde{\sigma}$:

$$
\tilde{\sigma} \equiv e^{-\Phi} \sigma
$$

This induces a mass term for the rescaled field that represents a proper quantum of string:
$e^{-2 \Phi}(\partial \sigma)^{2}=(\partial \tilde{\sigma})^{2}+\tilde{\sigma}^{2}(\partial \Phi)^{2}+2 \tilde{\sigma}(\partial \tilde{\sigma})\left[(\partial \Phi)_{\text {background }}+(\partial \Phi)_{\text {fluctuation }}\right]$

- The fluctuation term represents a trilinear vertex that we discard.
- The background term is constant, so its product with $\tilde{\sigma} \partial \tilde{\sigma}$ amounts to a total derivative.

Stability

The mass term for the rescaled field is tachyonic, and equal to $-q^{2}$:

$$
\mathcal{L}_{\tilde{\sigma}} \sim-\frac{1}{2 \kappa^{2}}\left[(\partial \tilde{\sigma})^{2}-q^{2} \tilde{\sigma}^{2}\right]
$$

The criterion for stability we proposed was that g_{s} times the canonical field $\tilde{\sigma}$ not increase exponentially with time.

Stability

The mass term for the rescaled field is tachyonic, and equal to $-q^{2}$:

$$
\mathcal{L}_{\tilde{\sigma}} \sim-\frac{1}{2 \kappa^{2}}\left[(\partial \tilde{\sigma})^{2}-q^{2} \tilde{\sigma}^{2}\right]
$$

The criterion for stability we proposed was that g_{s} times the canonical field $\tilde{\sigma}$ not increase exponentially with time.

Since $g_{s} \tilde{\sigma}$ is just σ (the original field appearing in the spacetime action in front of $\exp (-2 \Phi))$, the requirement for physical stability is that modes normalized to have the factor $\exp (-2 \Phi)$ in their kinetic term should shrink exponentially in the future (or at least remain constant).

Stability

The mass term for the rescaled field is tachyonic, and equal to $-q^{2}$:

$$
\mathcal{L}_{\tilde{\sigma}} \sim-\frac{1}{2 \kappa^{2}}\left[(\partial \tilde{\sigma})^{2}-q^{2} \tilde{\sigma}^{2}\right]
$$

The criterion for stability we proposed was that g_{s} times the canonical field $\tilde{\sigma}$ not increase exponentially with time.

Since $g_{s} \tilde{\sigma}$ is just σ (the original field appearing in the spacetime action in front of $\exp (-2 \Phi))$, the requirement for physical stability is that modes normalized to have the factor $\exp (-2 \Phi)$ in their kinetic term should shrink exponentially in the future (or at least remain constant).

So, canonical modes may grow exponentially in time, but they do not necessarily represent a physical instability: the exponential growth is countered by the shrinking string coupling.

Stability

We are interested in "truly tachyonic" perturbations of unstable string theories. In tbe bosonic string, for instance, the tachyon $\mathcal{T}(X)$ couples to the worldsheet as a normal-ordered potential $: \mathcal{T}(X):$

Stability

We are interested in "truly tachyonic" perturbations of unstable string theories. In tbe bosonic string, for instance, the tachyon $\mathcal{T}(X)$ couples to the worldsheet as a normal-ordered potential $: \mathcal{T}(X):$

We will now discuss a large class of solvable and exactly marginal perturbations of this form.

Outline

Overview of quintessent cosmology and linear dilaton backgrounds

Supercritical string theory: spacetime effective action

Stability in time-dependent backgrounds

Bosonic string solutions with nonzero tachyon

Dimension-changing solutions in the type 0 string

Transitions from type 0 to bosonic string theory

Conclusions

Bubble of nothing

Consider a theory with stress tensor

$$
\begin{aligned}
& T_{++}=-\frac{1}{\alpha^{\prime}}: \partial_{\sigma^{+}} X^{\mu} \partial_{\sigma^{+}} X_{\mu}:+\partial_{\sigma^{+}}^{2}\left(V_{\mu} X^{\mu}\right) \\
& T_{--}=-\frac{1}{\alpha^{\prime}}: \partial_{\sigma^{-}} X^{\mu} \partial_{\sigma^{-}} X_{\mu}:+\partial_{\sigma^{-}}^{2}\left(V_{\mu} X^{\mu}\right)
\end{aligned}
$$

where colons represent normal ordering of the $2 D$ theory. Here, $\sigma^{ \pm}$ are particular light-cone combinations of the worldsheet coordinates $\sigma^{0,1}$:

$$
\sigma^{ \pm}=-\sigma^{0} \pm \sigma^{1}
$$

Bubble of nothing

Consider a theory with stress tensor

$$
\begin{aligned}
& T_{++}=-\frac{1}{\alpha^{\prime}}: \partial_{\sigma^{+}} X^{\mu} \partial_{\sigma^{+}} X_{\mu}:+\partial_{\sigma^{+}}^{2}\left(V_{\mu} X^{\mu}\right) \\
& T_{--}=-\frac{1}{\alpha^{\prime}}: \partial_{\sigma^{-}} X^{\mu} \partial_{\sigma^{-}} X_{\mu}:+\partial_{\sigma^{-}}^{2}\left(V_{\mu} X^{\mu}\right)
\end{aligned}
$$

where colons represent normal ordering of the $2 D$ theory. Here, $\sigma^{ \pm}$ are particular light-cone combinations of the worldsheet coordinates $\sigma^{0,1}$:

$$
\sigma^{ \pm}=-\sigma^{0} \pm \sigma^{1}
$$

Physical states of the string correspond to local operators \mathcal{U} that are Virasoro primaries of weight one. That is, their operator product expansion (OPE) with the stress tensor satisfies:

$$
T_{++}(\sigma) \mathcal{U}(\tau) \simeq \frac{\mathcal{U}(\tau)}{\left(\sigma^{+}-\tau^{+}\right)^{2}}+\frac{\partial_{+} \mathcal{U}(\tau)}{\sigma^{+}-\tau^{+}}
$$

and similarly for T

Bubble of nothing

A profile $\mathcal{T}(X)$ for the tachyon corresponds to the vertex operator

$$
\mathcal{U}_{M} \equiv: \mathcal{T}(X):
$$

and admits the following on-shell condition:

$$
\partial_{\mu} \partial^{\mu} \mathcal{T}(X)-2 V^{\mu} \partial_{\mu} \mathcal{T}(X)+\frac{4}{\alpha^{\prime}} \mathcal{T}(X)=0
$$

Bubble of nothing

A profile $\mathcal{T}(X)$ for the tachyon corresponds to the vertex operator

$$
\mathcal{U}_{M} \equiv: \mathcal{T}(X):
$$

and admits the following on-shell condition:

$$
\partial_{\mu} \partial^{\mu} \mathcal{T}(X)-2 V^{\mu} \partial_{\mu} \mathcal{T}(X)+\frac{4}{\alpha^{\prime}} \mathcal{T}(X)=0
$$

For tachyon profiles of the form

$$
\mathcal{T}(X)=\mu^{2} \exp \left(B_{\mu} X^{\mu}\right)
$$

this condition is

$$
B^{2}-2 V \cdot B=-4 / \alpha^{\prime}
$$

Bubble of nothing

A profile $\mathcal{T}(X)$ for the tachyon corresponds to the vertex operator

$$
\mathcal{U}_{M} \equiv: \mathcal{T}(X):
$$

and admits the following on-shell condition:

$$
\partial_{\mu} \partial^{\mu} \mathcal{T}(X)-2 V^{\mu} \partial_{\mu} \mathcal{T}(X)+\frac{4}{\alpha^{\prime}} \mathcal{T}(X)=0
$$

For tachyon profiles of the form

$$
\mathcal{T}(X)=\mu^{2} \exp \left(B_{\mu} X^{\mu}\right)
$$

this condition is

$$
B^{2}-2 V \cdot B=-4 / \alpha^{\prime}
$$

A general value of B_{μ} will lead to a nontrivial interacting theory when the strength μ^{2} of the perturbation is treated as non-infinitesimal.

Bubble of nothing

There is a special set of choices for B_{μ} that renders the $2 D$ theory well-defined and conformal to all orders in perturbation theory.

Bubble of nothing

There is a special set of choices for B_{μ} that renders the $2 D$ theory well-defined and conformal to all orders in perturbation theory.

We choose the first term in the linearized tachyon equation of motion to vanish separately.

Bubble of nothing

There is a special set of choices for B_{μ} that renders the $2 D$ theory well-defined and conformal to all orders in perturbation theory.

We choose the first term in the linearized tachyon equation of motion to vanish separately.

This is tantamount to choosing the vector B_{μ} to be null. This renders the vertex operator : $\exp \left(B_{\mu} X^{\mu}\right)$: non-singular in the vicinity of itself.

Bubble of nothing

There is a special set of choices for B_{μ} that renders the $2 D$ theory well-defined and conformal to all orders in perturbation theory.

We choose the first term in the linearized tachyon equation of motion to vanish separately.

This is tantamount to choosing the vector B_{μ} to be null. This renders the vertex operator : $\exp \left(B_{\mu} X^{\mu}\right)$: non-singular in the vicinity of itself.

We therefore put B_{μ} in the form

$$
\begin{aligned}
B_{0} & =B_{1} \equiv \beta / \sqrt{2} \\
B_{i} & =0, \quad i \geq 2
\end{aligned}
$$

Bubble of nothing

The initial singularity of the cosmology lies in the strong-coupling region, and the tachyon increases into the future.

Bubble of nothing

The initial singularity of the cosmology lies in the strong-coupling region, and the tachyon increases into the future.

This gives rise to a particularly simple quantum theory. The kinetic term for $X^{ \pm}$appears as

$$
\mathcal{L} \sim-\frac{1}{2 \pi \alpha^{\prime}}\left[\left(\partial_{\sigma^{0}} X^{+}\right)\left(\partial_{\sigma^{0}} X^{-}\right)-\left(\partial_{\sigma^{1}} X^{+}\right)\left(\partial_{\sigma^{1}} X^{-}\right)\right]
$$

Bubble of nothing

The initial singularity of the cosmology lies in the strong-coupling region, and the tachyon increases into the future.

This gives rise to a particularly simple quantum theory. The kinetic term for $X^{ \pm}$appears as

$$
\mathcal{L} \sim-\frac{1}{2 \pi \alpha^{\prime}}\left[\left(\partial_{\sigma^{0}} X^{+}\right)\left(\partial_{\sigma^{0}} X^{-}\right)-\left(\partial_{\sigma^{1}} X^{+}\right)\left(\partial_{\sigma^{1}} X^{-}\right)\right]
$$

The propagator for the $X^{ \pm}$fields is therefore oriented.

$$
X^{+} \longrightarrow X^{-}
$$

Bubble of nothing

- The X field has oriented propagators.
- All the interaction vertices in the theory depend only on X^{+}.
- There are no non-trivial Feynman diagrams in the theory.
- This constitutes an interacting quantum theory, without quantum corrections.

Bubble of nothing

- The X field has oriented propagators.
- All the interaction vertices in the theory depend only on X^{+}.
- There are no non-trivial Feynman diagrams in the theory.
- This constitutes an interacting quantum theory, without quantum corrections.
(In conformal gauge, prior to enforcing gauge constraints, the theory is not unitary.)

Bubble of nothing

- The X field has oriented propagators.
- All the interaction vertices in the theory depend only on X^{+}.
- There are no non-trivial Feynman diagrams in the theory.
- This constitutes an interacting quantum theory, without quantum corrections.
(In conformal gauge, prior to enforcing gauge constraints, the theory is not unitary.)

The tachyon couples to the worldsheet in the term

$$
\mathcal{L} \sim-\frac{1}{2 \pi} \mu^{2} \exp \left(\beta X^{+}\right)
$$

Bubble of nothing

- The X field has oriented propagators.
- All the interaction vertices in the theory depend only on X^{+}.
- There are no non-trivial Feynman diagrams in the theory.
- This constitutes an interacting quantum theory, without quantum corrections.
(In conformal gauge, prior to enforcing gauge constraints, the theory is not unitary.)

The tachyon couples to the worldsheet in the term

$$
\mathcal{L} \sim-\frac{1}{2 \pi} \mu^{2} \exp \left(\beta X^{+}\right)
$$

Classically, X^{+}is harmonic, and acts as a source for X^{-}.

Bubble of nothing

By writing the solution to the Laplace equation for X^{+}as

$$
X^{+}=f_{+}\left(\sigma^{+}\right)+f_{-}\left(\sigma^{-}\right)
$$

the general solution for X^{-}can be expressed as follows:

$$
x^{-}=g_{+}\left(\sigma^{+}\right)+g_{-}\left(\sigma^{-}\right)+\frac{\alpha^{\prime} \beta \mu^{2}}{4}\left[\int_{\sigma^{+}}^{\infty} d y^{+} \exp \left(\beta f_{+}\left(y^{+}\right)\right)\right]\left[\int_{\sigma^{-}}^{\infty} d y^{-} \exp \left(\beta f_{-}\left(y^{-}\right)\right)\right]
$$

Bubble of nothing

By writing the solution to the Laplace equation for X^{+}as

$$
X^{+}=f_{+}\left(\sigma^{+}\right)+f_{-}\left(\sigma^{-}\right)
$$

the general solution for X^{-}can be expressed as follows:

$$
x^{-}=g_{+}\left(\sigma^{+}\right)+g_{-}\left(\sigma^{-}\right)+\frac{\alpha^{\prime} \beta \mu^{2}}{4}\left[\int_{\sigma^{+}}^{\infty} d y^{+} \exp \left(\beta f_{+}\left(y^{+}\right)\right)\right]\left[\int_{\sigma^{-}}^{\infty} d y^{-} \exp \left(\beta f_{-}\left(y^{-}\right)\right)\right]
$$

We thus see that the theory is exactly solvable.

Bubble of nothing

By writing the solution to the Laplace equation for X^{+}as

$$
X^{+}=f_{+}\left(\sigma^{+}\right)+f_{-}\left(\sigma^{-}\right)
$$

the general solution for X^{-}can be expressed as follows:
$X^{-}=g_{+}\left(\sigma^{+}\right)+g_{-}\left(\sigma^{-}\right)+\frac{\alpha^{\prime} \beta \mu^{2}}{4}\left[\int_{\sigma^{+}}^{\infty} d y^{+} \exp \left(\beta f_{+}\left(y^{+}\right)\right)\right]\left[\int_{\sigma^{-}}^{\infty} d y^{-} \exp \left(\beta f_{-}\left(y^{-}\right)\right)\right]$

We thus see that the theory is exactly solvable.
All interaction vertices in the theory depend only on X^{+}, and therefore correspond to diagrams composed strictly from outgoing lines:

Physical interpretation

The solution can be thought of as a phase boundary in spacetime between the $\mathcal{T}=0$ phase and the $\mathcal{T}>0$ phase.

Physical interpretation

The solution can be thought of as a phase boundary in spacetime between the $\mathcal{T}=0$ phase and the $\mathcal{T}>0$ phase.

The spacetime picture is therefore a phase bubble expanding out from a nucleation point:

Physical interpretation

To see what happens to states in the neighborhood of the bubble we can place a string state near the phase boundary.

Physical interpretation

To see what happens to states in the neighborhood of the bubble we can place a string state near the phase boundary.

The state collides with the bubble wall and is forced out of the region with nonzero tachyon. (The solution has $\mu^{2}=1, \beta=.1$, and the trajectory corresponds to $p^{+}=3, H_{\perp} \equiv \frac{\alpha^{\prime} p_{i}^{2}}{2}=4$.)

Physical interpretation

We can also plot the velocity of the particle as a function of time:

So the particle propagates until it hits the bubble wall, where the exponential term becomes important. At that point, the speed of the particle rapidly goes to -1 .

Physical interpretation

Absolutely no matter (including gravitons) can enter the region of nonzero tachyon.

Physical interpretation

Absolutely no matter (including gravitons) can enter the region of nonzero tachyon.

The solution can be thought of as a bubble of nothing.

Dimension-changing solutions in the bosonic string

Let's now inroduce some dependence on a third direction:

$$
\mathcal{T}(X)=\mu_{0}^{2} \exp \left(\beta X^{+}\right)-\mu_{k}^{2} \cos \left(k X_{2}\right) \exp \left(\beta_{k} X^{+}\right)
$$

with

$$
q \beta_{k}=\sqrt{2}\left(\frac{2}{\alpha^{\prime}}-\frac{1}{2} k^{2}\right)
$$

Dimension-changing solutions in the bosonic string

Let's now inroduce some dependence on a third direction:

$$
\mathcal{T}(X)=\mu_{0}^{2} \exp \left(\beta X^{+}\right)-\mu_{k}^{2} \cos \left(k X_{2}\right) \exp \left(\beta_{k} X^{+}\right)
$$

with

$$
q \beta_{k}=\sqrt{2}\left(\frac{2}{\alpha^{\prime}}-\frac{1}{2} k^{2}\right)
$$

This is exactly marginal when the wavelength k^{-1} of the tachyon is long compared to the string scale:

$$
\begin{gathered}
\mathcal{T}\left(X^{+}, X_{2}\right)=+\frac{\mu^{2}}{2 \alpha^{\prime}} \exp \left(\beta X^{+}\right): X_{2}^{2}:+\mathcal{T}_{0}\left(X^{+}\right) \\
\mathcal{T}_{0}\left(X^{+}\right)=\frac{\mu^{2} X^{+}}{\alpha^{\prime} q \sqrt{2}} \exp \left(\beta X^{+}\right)+\mu^{\prime 2} \exp \left(\beta X^{+}\right)
\end{gathered}
$$

Dimension-changing solutions in the bosonic string

States with modes of X_{2} excited are pushed out along the bubble wall: the physics is essentially the same as the bubble of nothing.

Dimension-changing solutions in the bosonic string

States with modes of X_{2} excited are pushed out along the bubble wall: the physics is essentially the same as the bubble of nothing.

At late times, the adiabatic theorem is satisfied to a better approximation, and these modes become frozen in an excited state.

Dimension-changing solutions in the bosonic string

States with modes of X_{2} excited are pushed out along the bubble wall: the physics is essentially the same as the bubble of nothing.

At late times, the adiabatic theorem is satisfied to a better approximation, and these modes become frozen in an excited state.

So these string states are pushed out to infinity and disappear from the theory in the late-time limit:

Dimension-changing solutions in the bosonic string

 There is a less generic class of states with no energy in the X_{2} direction.
Dimension-changing solutions in the bosonic string

 There is a less generic class of states with no energy in the X_{2} direction.

These propagate through the domain wall and into the bubble region.

Dimension-changing solutions in the bosonic string

 There is a less generic class of states with no energy in the X_{2} direction.

These propagate through the domain wall and into the bubble region.
The result is that the amount of matter on the worldsheet decreases dynamically as a function of time.

Dimension-changing solutions in the bosonic string

In other words, the number of dimensions in the target space decreases as a function of time.

Dimension-changing solutions in the bosonic string

In other words, the number of dimensions in the target space decreases as a function of time.

Question: What happens to the central charge if the spacetime dimension shifts? How can the perturbation be marginal?

Dimension-changing solutions in the bosonic string

In other words, the number of dimensions in the target space decreases as a function of time.

Question: What happens to the central charge if the spacetime dimension shifts? How can the perturbation be marginal?

The theory is solvable, so we should be able to answer this question exactly.

Dimension-changing solutions in the bosonic string

In other words, the number of dimensions in the target space decreases as a function of time.

Question: What happens to the central charge if the spacetime dimension shifts? How can the perturbation be marginal?

The theory is solvable, so we should be able to answer this question exactly.

In fact, quantum corrections in this theory truncate at one-loop order:

Dimension-changing solutions in the bosonic string

The one-loop diagrams can be thought of as a set of effective vertices for X^{+}, associated with integrating out the massive field X_{2}.

Dimension-changing solutions in the bosonic string

The one-loop diagrams can be thought of as a set of effective vertices for X^{+}, associated with integrating out the massive field X_{2}.

As you approach the domain wall, there are a number of massive string modes that acquire expectation values, and there are higher-derivative operators dressed with factors of $\exp \left(X^{+}\right)$.

Dimension-changing solutions in the bosonic string

The one-loop diagrams can be thought of as a set of effective vertices for X^{+}, associated with integrating out the massive field X_{2}.

As you approach the domain wall, there are a number of massive string modes that acquire expectation values, and there are higher-derivative operators dressed with factors of $\exp \left(X^{+}\right)$.

Most of these decay exponentially in the future.

Dimension-changing solutions in the bosonic string

The one-loop diagrams can be thought of as a set of effective vertices for X^{+}, associated with integrating out the massive field X_{2}.

As you approach the domain wall, there are a number of massive string modes that acquire expectation values, and there are higher-derivative operators dressed with factors of $\exp \left(X^{+}\right)$.

Most of these decay exponentially in the future.
In fact: in the far future, all corrections coming from integrating out X_{2} decay away, except for three contributions:

- the effective tachyon,
- the dilaton,
- the string-frame metric.

Dimension-changing solutions in the bosonic string

The effective tachyon can be fine-tuned away in the future.

Dimension-changing solutions in the bosonic string

The effective tachyon can be fine-tuned away in the future.
The remaining contributions are always nonzero, coming from the following diagrams:

Dimension-changing solutions in the bosonic string

The effective tachyon can be fine-tuned away in the future.
The remaining contributions are always nonzero, coming from the following diagrams:

Write the renormalized dilaton gradient and string-frame metric as:

$$
\begin{aligned}
\hat{V}_{\mu} & \equiv V_{\mu}+\Delta V_{\mu} \\
\hat{G}^{\mu \nu} & \equiv G_{\mu \nu}+\Delta G_{\mu \nu}
\end{aligned}
$$

Dimension-changing solutions in the bosonic string
We obtain:

$$
\begin{aligned}
& \hat{V}_{-}=V_{-}=-\frac{q}{\sqrt{2}} \\
& \hat{V}_{+}=-\frac{q}{\sqrt{2}}+\frac{\beta}{12} \\
& \hat{G}^{+-}=\hat{G}^{-+}=-1 \quad \hat{G}^{--}=-\frac{\alpha^{\prime} \beta^{2}}{24} \quad \hat{G}^{++}=0
\end{aligned}
$$

Dimension-changing solutions in the bosonic string

We obtain:

$$
\begin{aligned}
& \hat{V}_{-}=V_{-}=-\frac{q}{\sqrt{2}} \\
& \hat{V}_{+}=-\frac{q}{\sqrt{2}}+\frac{\beta}{12} \\
& \hat{G}^{+-}=\hat{G}^{-+}=-1 \quad \hat{G}^{--}=-\frac{\alpha^{\prime} \beta^{2}}{24} \quad \hat{G}^{++}=0
\end{aligned}
$$

q and β take values such that $q^{2}=(D-26) / 6 \alpha^{\prime}$ and $q \beta=\frac{2 \sqrt{2}}{\alpha^{\prime}}$.

Dimension-changing solutions in the bosonic string

We obtain:

$$
\begin{aligned}
& \hat{V}_{-}=V_{-}=-\frac{q}{\sqrt{2}} \\
& \hat{V}_{+}=-\frac{q}{\sqrt{2}}+\frac{\beta}{12} \\
& \hat{G}^{+-}=\hat{G}^{-+}=-1 \quad \hat{G}^{--}=-\frac{\alpha^{\prime} \beta^{2}}{24} \quad \hat{G}^{++}=0
\end{aligned}
$$

q and β take values such that $q^{2}=(D-26) / 6 \alpha^{\prime}$ and $q \beta=\frac{2 \sqrt{2}}{\alpha^{\prime}}$. In the $X^{+} \rightarrow \infty$ limit, we therefore get

$$
c^{\text {dilaton }}=6 \alpha^{\prime} \hat{G}^{\mu \nu} \hat{V}_{\mu} \hat{V}_{\nu}=-(D-26)+1
$$

Dimension-changing solutions in the bosonic string

We obtain:

$$
\begin{aligned}
& \hat{V}_{-}=V_{-}=-\frac{q}{\sqrt{2}} \\
& \hat{V}_{+}=-\frac{q}{\sqrt{2}}+\frac{\beta}{12} \\
& \hat{G}^{+-}=\hat{G}^{-+}=-1 \quad \hat{G}^{--}=-\frac{\alpha^{\prime} \beta^{2}}{24} \quad \hat{G}^{++}=0
\end{aligned}
$$

q and β take values such that $q^{2}=(D-26) / 6 \alpha^{\prime}$ and $q \beta=\frac{2 \sqrt{2}}{\alpha^{\prime}}$. In the $X^{+} \rightarrow \infty$ limit, we therefore get

$$
c^{\text {dilaton }}=6 \alpha^{\prime} \hat{G}^{\mu \nu} \hat{V}_{\mu} \hat{V}_{\nu}=-(D-26)+1
$$

The result is that the shift in cenral charge contribution from the dilaton precisely cancels the central charge shift due to the reduction in spacetime dimension.

Dimension-changing solutions in the bosonic string

This mechanism of central charge transfer works equally well when the tachyon has a quadratic minimum in several transverse directions:

$$
\begin{aligned}
\mathcal{T}(X) & =\frac{\mu^{2}}{2 \alpha^{\prime}} \exp \left(\beta X^{+}\right) \sum_{i=2}^{n+1}: X_{i}^{2}:+\mathcal{T}_{0}\left(X^{+}\right) \\
\mathcal{T}_{0}\left(X^{+}\right) & =\frac{n \mu^{2} X^{+}}{\alpha^{\prime} q \sqrt{2}} \exp \left(\beta X^{+}\right)+\mu^{\prime 2} \exp \left(\beta X^{+}\right)
\end{aligned}
$$

Dimension-changing solutions in the bosonic string

This mechanism of central charge transfer works equally well when the tachyon has a quadratic minimum in several transverse directions:

$$
\begin{aligned}
\mathcal{T}(X) & =\frac{\mu^{2}}{2 \alpha^{\prime}} \exp \left(\beta X^{+}\right) \sum_{i=2}^{n+1}: X_{i}^{2}:+\mathcal{T}_{0}\left(X^{+}\right) \\
\mathcal{T}_{0}\left(X^{+}\right) & =\frac{n \mu^{2} X^{+}}{\alpha^{\prime} q \sqrt{2}} \exp \left(\beta X^{+}\right)+\mu^{\prime 2} \exp \left(\beta X^{+}\right)
\end{aligned}
$$

In this case the renormalization of the metric and dilaton leads to a central charge contribution in the $X^{+} \rightarrow \infty$ limit given by:
$c^{\text {dilaton }}=6 \alpha^{\prime} \hat{G}^{\mu \nu} \hat{V}_{\mu} \hat{V}_{\nu}=-6 \alpha^{\prime} q^{2}+\frac{n q \beta \alpha^{\prime}}{\sqrt{2}}-\frac{n \alpha^{\prime 2} q^{2} \beta^{2}}{8}=-(D-26)+n$

Outline

Overview of quintessent cosmology and linear dilaton backgrounds

Supercritical string theory: spacetime effective action

Stability in time-dependent backgrounds

Bosonic string solutions with nonzero tachyon

Dimension-changing solutions in the type 0 string

Transitions from type 0 to bosonic string theory

Conclusions

Dimension-changing solutions in the type 0 string

Let's now consider the type 0 string theory in D greater than 10 . The magnitude of the dilaton gradient is now

Dimension-changing solutions in the type 0 string

Let's now consider the type 0 string theory in D greater than 10 . The magnitude of the dilaton gradient is now

$$
V_{0}=-q, \quad q=\sqrt{\frac{D-10}{4 \alpha^{\prime}}}
$$

and the linearized of motion for the tachyon is

Dimension-changing solutions in the type 0 string

Let's now consider the type 0 string theory in D greater than 10 . The magnitude of the dilaton gradient is now

$$
V_{0}=-q, \quad q=\sqrt{\frac{D-10}{4 \alpha^{\prime}}}
$$

and the linearized of motion for the tachyon is

$$
\partial^{\mu} \partial_{\mu} \mathcal{T}-2 V^{\mu} \partial_{\mu} \mathcal{T}+\frac{2}{\alpha^{\prime}} \mathcal{T}=0
$$

Dimension-changing solutions in the type 0 string

Let's now consider the type 0 string theory in D greater than 10 . The magnitude of the dilaton gradient is now

$$
V_{0}=-q, \quad q=\sqrt{\frac{D-10}{4 \alpha^{\prime}}}
$$

and the linearized of motion for the tachyon is

$$
\partial^{\mu} \partial_{\mu} \mathcal{T}-2 V^{\mu} \partial_{\mu} \mathcal{T}+\frac{2}{\alpha^{\prime}} \mathcal{T}=0
$$

One simple set of solutions is:

Dimension-changing solutions in the type 0 string

 Let's now consider the type 0 string theory in D greater than 10 . The magnitude of the dilaton gradient is now$$
V_{0}=-q, \quad q=\sqrt{\frac{D-10}{4 \alpha^{\prime}}}
$$

and the linearized of motion for the tachyon is

$$
\partial^{\mu} \partial_{\mu} \mathcal{T}-2 V^{\mu} \partial_{\mu} \mathcal{T}+\frac{2}{\alpha^{\prime}} \mathcal{T}=0
$$

One simple set of solutions is:

$$
\mathcal{T}=\mu \exp \left(\beta X^{+}\right)
$$

$$
\beta q=\frac{\sqrt{2}}{\alpha^{\prime}}
$$

Dimension-changing solutions in the type 0 string

Let's now consider the type 0 string theory in D greater than 10 . The magnitude of the dilaton gradient is now

$$
V_{0}=-q, \quad q=\sqrt{\frac{D-10}{4 \alpha^{\prime}}}
$$

and the linearized of motion for the tachyon is

$$
\partial^{\mu} \partial_{\mu} \mathcal{T}-2 V^{\mu} \partial_{\mu} \mathcal{T}+\frac{2}{\alpha^{\prime}} \mathcal{T}=0
$$

One simple set of solutions is:

$$
\mathcal{T}=\mu \exp \left(\beta X^{+}\right)
$$

$$
\beta q=\frac{\sqrt{2}}{\alpha^{\prime}}
$$

We will not consider these solutions yet - they are qualitatively different from our previous examples!

Dimension-changing solutions in the type 0 string

 Instead we will allow dependence on two transverse directions X_{2} and X_{3} :
Dimension-changing solutions in the type 0 string

 Instead we will allow dependence on two transverse directions X_{2} and X_{3} :$$
\mathcal{T}=\mu \exp \left(\beta X^{+}\right) X_{2} X_{3}
$$

$$
\beta q=\frac{\sqrt{2}}{\alpha^{\prime}}
$$

Dimension-changing solutions in the type 0 string

 Instead we will allow dependence on two transverse directions X_{2} and X_{3} :$$
\mathcal{T}=\mu \exp \left(\beta X^{+}\right) X_{2} X_{3}
$$

$$
\beta q=\frac{\sqrt{2}}{\alpha^{\prime}}
$$

Note that this perturbation is strictly primary of weight $(1,1)-$ without the addition of correction terms.

Dimension-changing solutions in the type 0 string

 Instead we will allow dependence on two transverse directions X_{2} and X_{3} :$$
\mathcal{T}=\mu \exp \left(\beta X^{+}\right) X_{2} X_{3}
$$

$$
\beta q=\frac{\sqrt{2}}{\alpha^{\prime}}
$$

Note that this perturbation is strictly primary of weight $(1,1)$ without the addition of correction terms.
The tachyon couples to the worldsheet as a $(1,1)$ superpotential:

$$
\mathcal{L}_{\mathrm{int}}=\frac{i}{2 \pi} \int d \theta_{+} d \theta_{-} \mathcal{T}(X)
$$

Dimension-changing solutions in the type 0 string

 Instead we will allow dependence on two transverse directions X_{2} and X_{3} :$$
\mathcal{T}=\mu \exp \left(\beta X^{+}\right) X_{2} X_{3}
$$

$$
\beta q=\frac{\sqrt{2}}{\alpha^{\prime}}
$$

Note that this perturbation is strictly primary of weight $(1,1)$ without the addition of correction terms.
The tachyon couples to the worldsheet as a $(1,1)$ superpotential:

$$
\mathcal{L}_{\mathrm{int}}=\frac{i}{2 \pi} \int d \theta_{+} d \theta_{-} \mathcal{T}(X)
$$

This gives rise to a potential and Yukawa term:

$$
\mathcal{L}_{\mathrm{int}}=-\frac{\alpha^{\prime}}{8 \pi} G^{M N} \partial_{M} \mathcal{T} \partial_{N} \mathcal{T}+\frac{i \alpha^{\prime}}{4 \pi} \partial_{M} \partial_{N} \mathcal{T} \tilde{\psi}^{M} \psi^{N}
$$

Dimension-changing solutions in the type 0 string

For our particular choice of profile, this gives an X^{+}-dependent mass term $M \equiv \mu \exp \left(\beta X^{+}\right)$to the bosons and fermions in the X_{2} and X_{3} multiplets:

$$
\begin{aligned}
\mathcal{L}_{\text {int }} & =-\frac{\alpha^{\prime} \mu^{2}}{8 \pi} \exp \left(2 \beta X^{+}\right)\left(X_{2}^{2}+X_{3}^{2}\right) \\
& +\frac{i \alpha^{\prime} \mu}{4 \pi} \exp \left(\beta X^{+}\right)\left(\tilde{\psi}_{2} \psi_{3}+\tilde{\psi}_{3} \psi_{2}\right)
\end{aligned}
$$

Dimension-changing solutions in the type 0 string

For our particular choice of profile, this gives an X^{+}-dependent mass term $M \equiv \mu \exp \left(\beta X^{+}\right)$to the bosons and fermions in the X_{2} and X_{3} multiplets:

$$
\begin{aligned}
\mathcal{L}_{\text {int }} & =-\frac{\alpha^{\prime} \mu^{2}}{8 \pi} \exp \left(2 \beta X^{+}\right)\left(X_{2}^{2}+X_{3}^{2}\right) \\
& +\frac{i \alpha^{\prime} \mu}{4 \pi} \exp \left(\beta X^{+}\right)\left(\tilde{\psi}_{2} \psi_{3}+\tilde{\psi}_{3} \psi_{2}\right)
\end{aligned}
$$

The spacetime dimension decreases by 2 in the limit of large X^{+}! The string theory in D-2 dimensions inherits the diagonal GSO projection of the D-dimensional parent theory - that is, the final-state string theory is still type 0 .

Dimension-changing solutions in the type 0 string

Once again, the domain wall acts as a filter for states with no excitations in the modes of the $X_{2,3}$ fields or their fermionic superpartners.

Dimension-changing solutions in the type 0 string

Once again, the domain wall acts as a filter for states with no excitations in the modes of the $X_{2,3}$ fields or their fermionic superpartners.

The domain wall is a boundary between type 0 in D dimensions and type 0 in D-2 dimensions.

Dimension-changing solutions in the type 0 string

Dimension-changing solutions in the type 0 string

Quantum corrections in the worldsheet theory truncate again at one-loop order.

Dimension-changing solutions in the type 0 string

Quantum corrections in the worldsheet theory truncate again at one-loop order.

All effective operators generated by integrating out the $X_{2,3}$ multiplets decay exponentially as a function of X^{+}, except for the couplings to the dilaton Φ and string-frame metric $G_{M N}$. The renormalizations are:

Dimension-changing solutions in the type 0 string

Quantum corrections in the worldsheet theory truncate again at one-loop order.

All effective operators generated by integrating out the $X_{2,3}$ multiplets decay exponentially as a function of X^{+}, except for the couplings to the dilaton Φ and string-frame metric $G_{M N}$. The renormalizations are:

$$
\begin{aligned}
\Delta \Phi & =+\frac{\beta X^{+}}{2} \\
\Delta G_{++}=-\Delta G^{--} & =+\frac{\beta^{2} \alpha^{\prime}}{2}
\end{aligned}
$$

which gives

$$
\Delta c^{\text {dilaton }}=+3
$$

Dimension-changing solutions in the type 0 string

 More generally we can start with type 0 in an even number of dimensions $D=10+2 K$, and consider a tachyon profile
Dimension-changing solutions in the type 0 string

More generally we can start with type 0 in an even number of dimensions $D=10+2 K$, and consider a tachyon profile

$$
\mathcal{T} \equiv \mu \exp \left(\beta X^{+}\right)\left(\sum_{j=1}^{n} X_{9+j} Y_{j}\right)
$$

with $Y_{j} \equiv X_{9+K+j}$.

Dimension-changing solutions in the type 0 string

 More generally we can start with type 0 in an even number of dimensions $D=10+2 K$, and consider a tachyon profile$$
\mathcal{T} \equiv \mu \exp \left(\beta X^{+}\right)\left(\sum_{j=1}^{n} X_{9+j} Y_{j}\right)
$$

with $Y_{j} \equiv X_{9+K+j}$.
Again, the increase dilaton central charge precisely compensates the loss of matter central charge. Integrating out $2 n$ dimensions in this way renormalizes the dilaton central charge by

Dimension-changing solutions in the type 0 string

 More generally we can start with type 0 in an even number of dimensions $D=10+2 K$, and consider a tachyon profile$$
\mathcal{T} \equiv \mu \exp \left(\beta X^{+}\right)\left(\sum_{j=1}^{n} X_{9+j} Y_{j}\right)
$$

with $Y_{j} \equiv X_{9+K+j}$.
Again, the increase dilaton central charge precisely compensates the loss of matter central charge. Integrating out $2 n$ dimensions in this way renormalizes the dilaton central charge by

$$
\Delta c^{\text {dilaton }}=+3 n
$$

Dimension-changing solutions in the type 0 string

More generally we can start with type 0 in an even number of dimensions $D=10+2 K$, and consider a tachyon profile

$$
\mathcal{T} \equiv \mu \exp \left(\beta X^{+}\right)\left(\sum_{j=1}^{n} X_{9+j} Y_{j}\right)
$$

with $Y_{j} \equiv X_{9+K+j}$.
Again, the increase dilaton central charge precisely compensates the loss of matter central charge. Integrating out $2 n$ dimensions in this way renormalizes the dilaton central charge by

$$
\Delta c^{\text {dilaton }}=+3 n
$$

In the case $n=K$, the final state is critical, 10-dimensional type 0 string theory with lightlike linear dilaton rolling to weak coupling in the future.

Dimension-changing solutions in the type 0 string

Note that no effective tachyon vev is generated inside the bubble the vanishing of the tachyon at large X^{+}is natural.

Dimension-changing solutions in the type 0 string

Note that no effective tachyon vev is generated inside the bubble the vanishing of the tachyon at large X^{+}is natural.
There is a discrete chiral R-symmetry $(-1)^{F_{L_{W}}}$ which acts as:

Dimension-changing solutions in the type 0 string

 Note that no effective tachyon vev is generated inside the bubble the vanishing of the tachyon at large X^{+}is natural.There is a discrete chiral R-symmetry $(-1)^{F_{L_{W}}}$ which acts as:

which is unbroken by the tachyon profile in the D-dimensional theory. Also an unbroken non-R symmetry reflecting $Y_{n+1, \cdots, K}$.

Dimension-changing solutions in the type 0 string

Note that no effective tachyon vev is generated inside the bubble the vanishing of the tachyon at large X^{+}is natural.
There is a discrete chiral R-symmetry $(-1)^{F_{L_{W}}}$ which acts as:

which is unbroken by the tachyon profile in the D-dimensional theory. Also an unbroken non-R symmetry reflecting $Y_{n+1, \cdots, K}$.
These symmetries forbid the generation of any term

$$
\Delta \mathcal{L} \propto \int d \theta_{+} d \theta_{-} f\left(X, Y_{n+1, \cdots, K}\right)
$$

in the $D-2 n$ dimensional theory on the right of the domain wall

Transitions from type 0 to type II string theory

Instead of starting with type 0 on a smooth space, we can consider starting on a \mathbb{Z}_{2} orbifold of flat space.

Transitions from type 0 to type II string theory

Instead of starting with type 0 on a smooth space, we can consider starting on a \mathbb{Z}_{2} orbifold of flat space.

In particular, let us orbifold by the symmetry $(-1)^{F_{L_{w}}}$ we just defined for the type 0 initial state in $D=10+2 K$ dimensions. Apart from acting on \tilde{G}, the generator $(-1)^{F_{L_{W}}}$ reflects all K of the Y coordinates.

Transitions from type 0 to type II string theory

Instead of starting with type 0 on a smooth space, we can consider starting on a \mathbb{Z}_{2} orbifold of flat space.

In particular, let us orbifold by the symmetry $(-1)^{F_{L_{W}}}$ we just defined for the type 0 initial state in $D=10+2 K$ dimensions. Apart from acting on \tilde{G}, the generator $(-1)^{F_{L_{W}}}$ reflects all K of the Y coordinates.

The orbifold singularity has real codimension K , with massless spacetime fermions propagating on the $10+K$ dimensional fixed locus.

Transitions from type 0 to type II string theory

Instead of starting with type 0 on a smooth space, we can consider starting on a \mathbb{Z}_{2} orbifold of flat space.

In particular, let us orbifold by the symmetry $(-1)^{F_{L_{W}}}$ we just defined for the type 0 initial state in $D=10+2 K$ dimensions. Apart from acting on \tilde{G}, the generator $(-1)^{F_{L_{W}}}$ reflects all K of the Y coordinates.

The orbifold singularity has real codimension K , with massless spacetime fermions propagating on the $10+K$ dimensional fixed locus.

The boundary conditions at the orbifold force the tachyon \mathcal{T} to vanish at $Y=0$:

Transitions from type 0 to type II string theory

Instead of starting with type 0 on a smooth space, we can consider starting on a \mathbb{Z}_{2} orbifold of flat space.

In particular, let us orbifold by the symmetry $(-1)^{F_{L_{W}}}$ we just defined for the type 0 initial state in $D=10+2 K$ dimensions. Apart from acting on \tilde{G}, the generator $(-1)^{F_{L_{W}}}$ reflects all K of the Y coordinates.

The orbifold singularity has real codimension K , with massless spacetime fermions propagating on the $10+K$ dimensional fixed locus.

The boundary conditions at the orbifold force the tachyon \mathcal{T} to vanish at $Y=0$:

$$
\mathcal{T}(X, Y)=-\mathcal{T}(X,-Y)
$$

Transitions from type 0 to type II string theory

Starting with type 0 in $\mathrm{D}=10+2 \mathrm{~K}$, we can consider a tachyon profile which describes the behavior of a generic tachyon vev near the orbifold fixed locus:

Transitions from type 0 to type II string theory

Starting with type 0 in $\mathrm{D}=10+2 \mathrm{~K}$, we can consider a tachyon profile which describes the behavior of a generic tachyon vev near the orbifold fixed locus:

$$
\mathcal{T} \equiv \mu \exp \left(\beta X^{+}\right)\left(\sum_{j=1}^{K} X_{9+j} Y_{j}\right)
$$

with $Y_{j} \equiv X_{9+K+j}$.

Transitions from type 0 to type II string theory

Starting with type 0 in $\mathrm{D}=10+2 \mathrm{~K}$, we can consider a tachyon profile which describes the behavior of a generic tachyon vev near the orbifold fixed locus:

$$
\mathcal{T} \equiv \mu \exp \left(\beta X^{+}\right)\left(\sum_{j=1}^{K} X_{9+j} Y_{j}\right)
$$

with $Y_{j} \equiv X_{9+K+j}$.
Since the tachyon is odd under reflection of the Y coordinates, the worldsheet mass matrix can at most pair up K of the (unorbifolded) X coordinates with the K (orbifolded) Y coordinates.

Transitions from type 0 to type II string theory

Starting with type 0 in $\mathrm{D}=10+2 \mathrm{~K}$, we can consider a tachyon profile which describes the behavior of a generic tachyon vev near the orbifold fixed locus:

$$
\mathcal{T} \equiv \mu \exp \left(\beta X^{+}\right)\left(\sum_{j=1}^{K} X_{9+j} Y_{j}\right)
$$

with $Y_{j} \equiv X_{9+K+j}$.
Since the tachyon is odd under reflection of the Y coordinates, the worldsheet mass matrix can at most pair up K of the (unorbifolded) X coordinates with the K (orbifolded) Y coordinates.

The minimum dimension of the final state is therefore $\mathbf{1 0}$!

Transitions from type 0 to type II string theory

To discern the effective physics of the ten-dimensional final state, note that the GSO projection of the $X^{+} \rightarrow \infty$ theory is now generated by two elements.

Transitions from type 0 to type II string theory

To discern the effective physics of the ten-dimensional final state, note that the GSO projection of the $X^{+} \rightarrow \infty$ theory is now generated by two elements.
The orbifold symmetry $(-1)^{F_{L_{W}}}$ acts on the remaining fields as:

Transitions from type 0 to type II string theory

To discern the effective physics of the ten-dimensional final state, note that the GSO projection of the $X^{+} \rightarrow \infty$ theory is now generated by two elements.
The orbifold symmetry $(-1)^{F_{L_{W}}}$ acts on the remaining fields as:

Transitions from type 0 to type II string theory

To discern the effective physics of the ten-dimensional final state, note that the GSO projection of the $X^{+} \rightarrow \infty$ theory is now generated by two elements.
The orbifold symmetry $(-1)^{F_{L_{W}}}$ acts on the remaining fields as:

$X:$	+
$\tilde{G}:$	-
$G:$	+

We also have the generator $(-1)^{F_{W}}$ of the type 0 GSO projection. The product $(-1)^{F_{R_{W}}} \equiv(-1)^{F_{W}} \cdot(-1)^{F_{L_{W}}}$ acts as:

Transitions from type 0 to type II string theory

To discern the effective physics of the ten-dimensional final state, note that the GSO projection of the $X^{+} \rightarrow \infty$ theory is now generated by two elements.
The orbifold symmetry $(-1)^{F_{L_{W}}}$ acts on the remaining fields as:

$X:$	+
$\tilde{G}:$	-
$G:$	+

We also have the generator $(-1)^{F_{W}}$ of the type 0 GSO projection. The product $(-1)^{F_{R_{W}}} \equiv(-1)^{F_{W}} \cdot(-1)^{F_{L_{W}}}$ acts as:

$X:$	+
$\tilde{G}:$	+
$G:$	-

Transitions from type 0 to type II string theory

We thus have the usual GSO projection of critical type II string theory. The worldsheet theory $X^{+} \rightarrow \infty$ is therefore identical to the worldsheet theory of the type II superstring.

Transitions from type 0 to type II string theory

We thus have the usual GSO projection of critical type II string theory. The worldsheet theory $X^{+} \rightarrow \infty$ is therefore identical to the worldsheet theory of the type II superstring.

The background values of all fields are trivial, save for the dilaton, which has a lightlike gradient, rolling to weak coupling in the future.

Transitions from type 0 to type II string theory

We thus have the usual GSO projection of critical type II string theory. The worldsheet theory $X^{+} \rightarrow \infty$ is therefore identical to the worldsheet theory of the type II superstring.

The background values of all fields are trivial, save for the dilaton, which has a lightlike gradient, rolling to weak coupling in the future.

A type II background with flat string-frame metric and lightlike linear dilaton actually preserves sixteen Killing spinors.

Transitions from type 0 to type II string theory

We thus have the usual GSO projection of critical type II string theory. The worldsheet theory $X^{+} \rightarrow \infty$ is therefore identical to the worldsheet theory of the type II superstring.

The background values of all fields are trivial, save for the dilaton, which has a lightlike gradient, rolling to weak coupling in the future.

A type II background with flat string-frame metric and lightlike linear dilaton actually preserves sixteen Killing spinors.

Our final state is therefore a half-BPS vacuum of type II string theory.

Transitions from type 0 to type II string theory

We thus have the usual GSO projection of critical type II string theory. The worldsheet theory $X^{+} \rightarrow \infty$ is therefore identical to the worldsheet theory of the type II superstring.

The background values of all fields are trivial, save for the dilaton, which has a lightlike gradient, rolling to weak coupling in the future.

A type II background with flat string-frame metric and lightlike linear dilaton actually preserves sixteen Killing spinors.

Our final state is therefore a half-BPS vacuum of type II string theory.

This exact solution establishes conclusively that the type 0 theory in supercritical dimensions can relax by tachyon condensation to a supersymmetric ground state in $D=10$!

Outline

Overview of quintessent cosmology and linear dilaton backgrounds

Supercritical string theory: spacetime effective action

Stability in time-dependent backgrounds

Bosonic string solutions with nonzero tachyon

Dimension-changing solutions in the type 0 string

Transitions from type 0 to bosonic string theory

Conclusions

Lightlike tachyon condensation in type 0

In all examples so far, the basic kind of string theory is unchanged between the initial and final configurations.

Lightlike tachyon condensation in type 0

In all examples so far, the basic kind of string theory is unchanged between the initial and final configurations.

We now turn to a related model of lightlike tachyon condensation in type 0 string theory, where the tachyon depends only on X^{+}, and is independent of the $D-2$ dimensions transverse to $X^{ \pm}$.

Lightlike tachyon condensation in type 0

In all examples so far, the basic kind of string theory is unchanged between the initial and final configurations.

We now turn to a related model of lightlike tachyon condensation in type 0 string theory, where the tachyon depends only on X^{+}, and is independent of the $D-2$ dimensions transverse to $X^{ \pm}$.

We start with the Lagrangian for a timelike linear dilaton theory on a flat worldsheet, describing D free, massless fields and their superpartners:

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2 \pi} G_{M N}\left[\frac{2}{\alpha^{\prime}}\left(\partial_{+} X^{M}\right)\left(\partial_{-} X^{N}\right)-i \psi^{M}\left(\partial_{-} \psi^{N}\right)-i \tilde{\psi}^{M}\left(\partial_{+} \tilde{\psi}^{N}\right)\right]
$$

Lightlike tachyon condensation in type 0

The dilaton gradient V_{M} must satisfy $4 \alpha^{\prime} V^{2}=-(D-10)$, so we take

$$
\begin{aligned}
V_{+} & =V_{-}=-\frac{q}{\sqrt{2}} \\
V_{i} & =0, \quad i=2, \cdots, D-1 \\
q & \equiv \sqrt{\frac{D-10}{4 \alpha^{\prime}}}
\end{aligned}
$$

assuming the dilaton rolls to weak coupling in the future.

Lightlike tachyon condensation in type 0

The dilaton gradient V_{M} must satisfy $4 \alpha^{\prime} V^{2}=-(D-10)$, so we take

$$
\begin{aligned}
V_{+} & =V_{-}=-\frac{q}{\sqrt{2}} \\
V_{i} & =0, \quad i=2, \cdots, D-1 \\
q & \equiv \sqrt{\frac{D-10}{4 \alpha^{\prime}}}
\end{aligned}
$$

assuming the dilaton rolls to weak coupling in the future.
We would like to consider solutions for which the type 0 tachyon condenses, growing exponentially in the lightlike direction X^{+}.

Lightlike tachyon condensation in type 0

The dilaton gradient V_{M} must satisfy $4 \alpha^{\prime} V^{2}=-(D-10)$, so we take

$$
\begin{aligned}
V_{+} & =V_{-}=-\frac{q}{\sqrt{2}} \\
V_{i} & =0, \quad i=2, \cdots, D-1 \\
q & \equiv \sqrt{\frac{D-10}{4 \alpha^{\prime}}}
\end{aligned}
$$

assuming the dilaton rolls to weak coupling in the future.
We would like to consider solutions for which the type 0 tachyon condenses, growing exponentially in the lightlike direction X^{+}.

We again take

$$
\mathcal{T} \equiv \tilde{\mu} \exp \left(\beta X^{+}\right)
$$

Lightlike tachyon condensation in type 0

The linearized equation of motion

$$
\partial^{2} \mathcal{T}-2 V \cdot \partial \mathcal{T}+\frac{2}{\alpha^{\prime}} \mathcal{T}=0
$$

fixes

$$
\beta q=\frac{\sqrt{2}}{\alpha^{\prime}}
$$

Lightlike tachyon condensation in type 0

The linearized equation of motion

$$
\partial^{2} \mathcal{T}-2 V \cdot \partial \mathcal{T}+\frac{2}{\alpha^{\prime}} \mathcal{T}=0
$$

fixes

$$
\beta q=\frac{\sqrt{2}}{\alpha^{\prime}}
$$

Remember that the tachyon couples to the worldsheet as a $(1,1)$ superpotential, giving rise to a potential and Yukawa term:

$$
\mathcal{L}_{\mathrm{int}}=-\frac{\alpha^{\prime}}{8 \pi} G^{M N} \partial_{M} \mathcal{T} \partial_{N} \mathcal{T}+\frac{i \alpha^{\prime}}{4 \pi} \partial_{M} \partial_{N} \mathcal{T} \tilde{\psi}^{M} \psi^{N}
$$

Lightlike tachyon condensation in type 0

We also get a modified supersymmetry transformation for the fermions:

$$
\begin{aligned}
\left\{Q_{-}, \psi^{M}\right\} & =-\left\{Q_{+}, \tilde{\psi}^{M}\right\}=F^{M} \\
F^{M} & \equiv-\sqrt{\frac{\alpha^{\prime}}{8}} G^{M N} \partial_{N} \mathcal{T}
\end{aligned}
$$

Lightlike tachyon condensation in type 0

We also get a modified supersymmetry transformation for the fermions:

$$
\begin{aligned}
\left\{Q_{-}, \psi^{M}\right\} & =-\left\{Q_{+}, \tilde{\psi}^{M}\right\}=F^{M} \\
F^{M} & \equiv-\sqrt{\frac{\alpha^{\prime}}{8}} G^{M N} \partial_{N} \mathcal{T}
\end{aligned}
$$

Since the gradient of the tachyon is null, the worldsheet potential

$$
\frac{\alpha^{\prime}}{16 \pi} G^{M N} \partial_{M} \mathcal{T} \partial_{N} \mathcal{T}
$$

is zero.

Lightlike tachyon condensation in type 0

We also get a modified supersymmetry transformation for the fermions:

$$
\begin{aligned}
\left\{Q_{-}, \psi^{M}\right\} & =-\left\{Q_{+}, \tilde{\psi}^{M}\right\}=F^{M} \\
F^{M} & \equiv-\sqrt{\frac{\alpha^{\prime}}{8}} G^{M N} \partial_{N} \mathcal{T}
\end{aligned}
$$

Since the gradient of the tachyon is null, the worldsheet potential

$$
\frac{\alpha^{\prime}}{16 \pi} G^{M N} \partial_{M} \mathcal{T} \partial_{N} \mathcal{T}
$$

is zero.
But there is a nonvanishing F-term and Yukawa coupling between the lightlike fermions:

$$
\begin{aligned}
F^{-} & =+\frac{q \sqrt{\alpha^{\prime}} \mu}{2} \exp \left(\beta X^{+}\right) \\
\mathcal{L}_{\text {Yukawa }} & =\frac{i \mu}{4 \pi} \exp \left(\beta X^{+}\right) \tilde{\psi}^{+} \psi^{+}
\end{aligned}
$$

where $\mu \equiv \beta^{2} \alpha^{\prime} \tilde{\mu}$.

The $M \rightarrow \infty$ limit

We want to determine the $X^{+} \rightarrow \infty$ limit of this theory.

The $M \rightarrow \infty$ limit

We want to determine the $X^{+} \rightarrow \infty$ limit of this theory.

There is no worldsheet potential, so no string states are expelled from the interior of the bubble.

The $M \rightarrow \infty$ limit

We want to determine the $X^{+} \rightarrow \infty$ limit of this theory.

There is no worldsheet potential, so no string states are expelled from the interior of the bubble.

The Lagrangian for the light-cone multiplets $X^{\mu}, \psi^{\mu}, \tilde{\psi}^{\mu}$ is:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LC}}= & \frac{i}{\pi} \tilde{\psi}^{+} \partial_{+} \tilde{\psi}^{-}+\frac{i}{\pi} \psi^{+} \partial_{-} \psi^{-}+\frac{i M}{2 \pi} \tilde{\psi}^{+} \psi^{+} \\
& -\frac{1}{\pi \alpha^{\prime}}\left(\partial_{+} X^{+}\right)\left(\partial_{-} X^{-}\right)-\frac{1}{\pi \alpha^{\prime}}\left(\partial_{+} X^{-}\right)\left(\partial_{-} X^{+}\right)
\end{aligned}
$$

where $M \equiv \mu \exp \left(\beta X^{+}\right)$.

The $M \rightarrow \infty$ limit

The stress tensor of the light-cone sector of the theory is

$$
\begin{aligned}
T^{\mathrm{LC}} & =T^{X^{\mu}}+T^{\psi^{\mu}} \\
T^{\chi^{\mu}} & \equiv-\frac{1}{\alpha^{\prime}} G_{\mu \nu}: \partial_{+} X^{\mu} \partial_{+} X^{\nu}:+V_{\mu} \partial_{+}^{2} X^{\mu} \\
T^{\psi^{\mu}} & =+\frac{i}{2} G_{\mu \nu}: \psi^{\mu} \partial_{+} \psi^{\nu}:
\end{aligned}
$$

with supercurrent

$$
\begin{aligned}
G^{\mathrm{LC}}\left(\sigma^{+}\right) & \equiv \sqrt{\frac{2}{\alpha^{\prime}}} \psi_{\mu}\left(\partial_{+} X^{\mu}\right)-\sqrt{2 \alpha^{\prime}} V_{\mu} \partial_{+} \psi^{\mu} \\
& =-\sqrt{\frac{2}{\alpha^{\prime}}} \psi^{+} \partial_{+} X^{-}-\sqrt{\frac{2}{\alpha^{\prime}}} \psi^{-} \partial_{+} X^{+}+\sqrt{\alpha^{\prime}} q \partial_{+} \psi^{+}+\sqrt{\alpha^{\prime}} q \partial_{+} \psi^{-}
\end{aligned}
$$

Analogous equations apply for the left-moving stress tensor and supercurrent, replacing ψ with $\tilde{\psi}$ and ∂_{+}with ∂_{-}.

The $M \rightarrow \infty$ limit

As $M \rightarrow \infty$, the massive interaction becomes large and the theory is strongly coupled in the variables $X^{\mu}, \psi^{\mu}, \tilde{\psi}^{\mu}$.

The $M \rightarrow \infty$ limit

As $M \rightarrow \infty$, the massive interaction becomes large and the theory is strongly coupled in the variables $X^{\mu}, \psi^{\mu}, \tilde{\psi}^{\mu}$.

We would like to define an effective field theory useful for analyzing the large $-M$ regime, described by free effective fields whose interactions are proportional to negative rather than positive powers of M.

The $M \rightarrow \infty$ limit

We will not integrate out degrees of freedom. Instead, we will perform a canonical change of variables such that the new set of variables has interaction terms inversely proportional to M.

The $M \rightarrow \infty$ limit

We will not integrate out degrees of freedom. Instead, we will perform a canonical change of variables such that the new set of variables has interaction terms inversely proportional to M.

Nothing is integrated out and no information is lost as $M \rightarrow \infty$, but the theory becomes free in this limit, when expressed in terms of the new variables.

The $M \rightarrow \infty$ limit

First, consider an approximation in which the perturbation M is treated as a fixed constant M_{0}.

The $M \rightarrow \infty$ limit

First, consider an approximation in which the perturbation M is treated as a fixed constant M_{0}.

As $M_{0} \rightarrow \infty$, the conformal invariance of the original $\psi^{ \pm}, \tilde{\psi}^{ \pm}$ theory is broken.

The $M \rightarrow \infty$ limit

First, consider an approximation in which the perturbation M is treated as a fixed constant M_{0}.

As $M_{0} \rightarrow \infty$, the conformal invariance of the original $\psi^{ \pm}, \tilde{\psi}^{ \pm}$ theory is broken.

We would like to find a new set of variables in which the theory is approximately conformal, with corrections that vanish in the $M_{0} \rightarrow \infty$ limit:

$$
\begin{gathered}
\psi^{+}=2 c^{\prime}{ }_{5}-M_{0}^{-1} \tilde{b}_{5} \\
\tilde{\psi}^{+}=-2 \tilde{c}^{\prime}{ }_{5}+M_{0}^{-1} b_{5}
\end{gathered}
$$

$$
\begin{aligned}
\psi^{-} & =M_{0} \tilde{c}_{5} \\
\tilde{\psi}^{-} & =-M_{0} c_{5}
\end{aligned}
$$

The $M \rightarrow \infty$ limit

This change of variables is canonical, but not manifestly Lorentz invariant.

The $M \rightarrow \infty$ limit

This change of variables is canonical, but not manifestly Lorentz invariant.

The Lagrangian becomes

$$
\begin{aligned}
\mathcal{L}_{\text {fermi }}= & -\frac{i}{\pi} \tilde{b}_{5} \partial_{+} \tilde{c}_{5}-\frac{i}{\pi} b_{5} \partial_{-} c_{5}-\frac{i}{2 \pi M_{0}} b_{5} \tilde{b}_{5} \\
& -\frac{1}{\pi \alpha^{\prime}}\left(\partial_{+} X^{+}\right)\left(\partial_{-} X^{-}\right)-\frac{1}{\pi \alpha^{\prime}}\left(\partial_{+} X^{-}\right)\left(\partial_{-} X^{+}\right)
\end{aligned}
$$

The $M \rightarrow \infty$ limit

This change of variables is canonical, but not manifestly Lorentz invariant.

The Lagrangian becomes

$$
\begin{aligned}
\mathcal{L}_{\text {fermi }}= & -\frac{i}{\pi} \tilde{b}_{5} \partial_{+} \tilde{c}_{5}-\frac{i}{\pi} b_{5} \partial_{-} c_{5}-\frac{i}{2 \pi M_{0}} b_{5} \tilde{b}_{5} \\
& -\frac{1}{\pi \alpha^{\prime}}\left(\partial_{+} X^{+}\right)\left(\partial_{-} X^{-}\right)-\frac{1}{\pi \alpha^{\prime}}\left(\partial_{+} X^{-}\right)\left(\partial_{-} X^{+}\right)
\end{aligned}
$$

Enforcing the equations of motion, the change of variables is

$$
\begin{aligned}
\psi^{+} & =2 \partial_{+} c_{5}, & & \psi^{-}=M_{0} \tilde{c}_{5} \\
\tilde{\psi}^{+} & =2 \partial_{-} \tilde{c}_{5}, & & \tilde{\psi}^{-}=-M_{0} c_{5}
\end{aligned}
$$

The $M \rightarrow \infty$ limit

This change of variables is canonical, but not manifestly Lorentz invariant.

The Lagrangian becomes

$$
\begin{aligned}
\mathcal{L}_{\text {fermi }}= & -\frac{i}{\pi} \tilde{b}_{5} \partial_{+} \tilde{c}_{5}-\frac{i}{\pi} b_{5} \partial_{-} c_{5}-\frac{i}{2 \pi M_{0}} b_{5} \tilde{b}_{5} \\
& -\frac{1}{\pi \alpha^{\prime}}\left(\partial_{+} X^{+}\right)\left(\partial_{-} X^{-}\right)-\frac{1}{\pi \alpha^{\prime}}\left(\partial_{+} X^{-}\right)\left(\partial_{-} X^{+}\right)
\end{aligned}
$$

Enforcing the equations of motion, the change of variables is

$$
\begin{array}{rlrl}
\psi^{+} & =2 \partial_{+} c_{5}, & & \psi^{-}=M_{0} \tilde{c}_{5} \\
\tilde{\psi}^{+} & =2 \partial_{-} \tilde{c}_{5}, & \tilde{\psi}^{-}=-M_{0} c_{5}
\end{array}
$$

The transformation is therefore Lorentz invariant if we assign to b_{5} a Lorentz weight of $3 / 2$, and to c_{5} a weight of $-1 / 2$.

The $M \rightarrow \infty$ limit

So the $M_{0} \rightarrow \infty$ limit of the original theory has a renormalization group flow to a ghost system with spins ($3 / 2,-1 / 2$).

The $M \rightarrow \infty$ limit

So the $M_{0} \rightarrow \infty$ limit of the original theory has a renormalization group flow to a ghost system with spins ($3 / 2,-1 / 2$).

The RG flow induced by the massive perturbation $M_{0} \psi^{+} \tilde{\psi}^{+}$ decreases the central charge by 12 units.

The $M \rightarrow \infty$ limit

So the $M_{0} \rightarrow \infty$ limit of the original theory has a renormalization group flow to a ghost system with spins ($3 / 2,-1 / 2$).

The RG flow induced by the massive perturbation $M_{0} \psi^{+} \tilde{\psi}^{+}$ decreases the central charge by 12 units.

The central charge of the original $\psi^{ \pm}$system is 1 , but the central charge of a bc ghost system with weights $(3 / 2,-1 / 2)$ is -11 .

Promoting M to a dynamical object

We now want to find a canonical change of variables that generalizes what we have done to the case for which M is defined as $\mu \exp \left(\beta X^{+}\right)$, where X^{+}is a dynamical field.

Promoting M to a dynamical object

We now want to find a canonical change of variables that generalizes what we have done to the case for which M is defined as $\mu \exp \left(\beta X^{+}\right)$, where X^{+}is a dynamical field.

We define a new set of variables $b_{4}, c_{4}, \tilde{b}_{4}, \tilde{c}_{4}$:

$$
\begin{aligned}
\psi^{+} & =2 c_{4}^{\prime}-M^{-1} \tilde{b}_{4}+2 \beta\left(\partial_{+} X^{+}\right) c_{4} \\
\psi^{-} & =M \tilde{c}_{4} \\
\tilde{\psi}^{+} & =-2 \tilde{c}_{4}^{\prime}+M^{-1} b_{4}+2 \beta\left(\partial_{-} X^{+}\right) \tilde{c}_{4} \\
\tilde{\psi}^{-} & =-M c_{4}
\end{aligned}
$$

Promoting M to a dynamical object

We now want to find a canonical change of variables that generalizes what we have done to the case for which M is defined as $\mu \exp \left(\beta X^{+}\right)$, where X^{+}is a dynamical field.

We define a new set of variables $b_{4}, c_{4}, \tilde{b}_{4}, \tilde{c}_{4}$:

$$
\begin{aligned}
\psi^{+} & =2 c_{4}^{\prime}-M^{-1} \tilde{b}_{4}+2 \beta\left(\partial_{+} X^{+}\right) c_{4} \\
\psi^{-} & =M \tilde{c}_{4} \\
\tilde{\psi}^{+} & =-2 \tilde{c}_{4}^{\prime}+M^{-1} b_{4}+2 \beta\left(\partial_{-} X^{+}\right) \tilde{c}_{4} \\
\tilde{\psi}^{-} & =-M c_{4}
\end{aligned}
$$

Perform a corresponding redefinition of the bosons $X^{ \pm}$:

$$
\begin{aligned}
& X^{+} \equiv Y^{+} \\
& X^{-} \equiv Y^{-}+i \beta \alpha^{\prime} \mu \exp \left(\beta X^{+}\right) c_{4} \tilde{c}_{4}
\end{aligned}
$$

Promoting M to a dynamical object

This yields the following Lagrangian

$$
\begin{aligned}
\mathcal{L}= & -\frac{i}{\pi} \tilde{b}_{4} \partial_{+} \tilde{c}_{4}-\frac{i}{\pi} b_{4} \partial_{-} c_{4}-\frac{i}{2 \pi M} b_{4} \tilde{b}_{4} \\
& -\frac{1}{\pi \alpha^{\prime}}\left(\partial_{+} Y^{+}\right)\left(\partial_{-} Y^{-}\right)-\frac{1}{\pi \alpha^{\prime}}\left(\partial_{+} Y^{-}\right)\left(\partial_{-} Y^{+}\right)
\end{aligned}
$$

Promoting M to a dynamical object

This yields the following Lagrangian

$$
\begin{aligned}
\mathcal{L}= & -\frac{i}{\pi} \tilde{b}_{4} \partial_{+} \tilde{c}_{4}-\frac{i}{\pi} b_{4} \partial_{-} c_{4}-\frac{i}{2 \pi M} b_{4} \tilde{b}_{4} \\
& -\frac{1}{\pi \alpha^{\prime}}\left(\partial_{+} Y^{+}\right)\left(\partial_{-} Y^{-}\right)-\frac{1}{\pi \alpha^{\prime}}\left(\partial_{+} Y^{-}\right)\left(\partial_{-} Y^{+}\right)
\end{aligned}
$$

The stress tensor becomes:

$$
T^{Y^{\mu}}+T^{\psi^{\mu}}=-\frac{1}{\alpha^{\prime}} G_{\mu \nu} \partial_{+} Y^{\mu} \partial_{+} Y^{\nu}+V_{\mu} \partial^{2} Y^{\mu}-\frac{3 i}{2} \partial_{+} c_{4} b_{4}-\frac{i}{2} c_{4} \partial_{+} b_{4}
$$

Promoting M to a dynamical object

This yields the following Lagrangian

$$
\begin{aligned}
\mathcal{L}= & -\frac{i}{\pi} \tilde{b}_{4} \partial_{+} \tilde{c}_{4}-\frac{i}{\pi} b_{4} \partial_{-} c_{4}-\frac{i}{2 \pi M} b_{4} \tilde{b}_{4} \\
& -\frac{1}{\pi \alpha^{\prime}}\left(\partial_{+} Y^{+}\right)\left(\partial_{-} Y^{-}\right)-\frac{1}{\pi \alpha^{\prime}}\left(\partial_{+} Y^{-}\right)\left(\partial_{-} Y^{+}\right)
\end{aligned}
$$

The stress tensor becomes:

$$
T^{Y^{\mu}}+T^{\psi^{\mu}}=-\frac{1}{\alpha^{\prime}} G_{\mu \nu} \partial_{+} Y^{\mu} \partial_{+} Y^{\nu}+V_{\mu} \partial^{2} Y^{\mu}-\frac{3 i}{2} \partial_{+} c_{4} b_{4}-\frac{i}{2} c_{4} \partial_{+} b_{4}
$$

As M grows, the stress tensor becomes free in canonical variables, with all interaction terms going to zero as M^{-1}.

Promoting M to a dynamical object

We refer to the variables $Y^{\mu}, b_{4}, c_{4}, \tilde{b}_{4}, \tilde{c}_{4}$ as the $I R$ variables, and the $X^{\mu}, \psi^{\mu}, \tilde{\psi}^{\mu}$ as the $U V$ variables.

Promoting M to a dynamical object

We refer to the variables $Y^{\mu}, b_{4}, c_{4}, \tilde{b}_{4}, \tilde{c}_{4}$ as the $I R$ variables, and the $X^{\mu}, \psi^{\mu}, \tilde{\psi}^{\mu}$ as the $U V$ variables.

The IR fields are legitimate, weakly interacting variables, suitable for describing the $X^{+} \rightarrow+\infty$ limit of the theory.

Promoting M to a dynamical object

We refer to the variables $Y^{\mu}, b_{4}, c_{4}, \tilde{b}_{4}, \tilde{c}_{4}$ as the $I R$ variables, and the $X^{\mu}, \psi^{\mu}, \tilde{\psi}^{\mu}$ as the $U V$ variables.

The IR fields are legitimate, weakly interacting variables, suitable for describing the $X^{+} \rightarrow+\infty$ limit of the theory.

There is an exact duality between the UV description and the IR description.

Promoting M to a dynamical object

We refer to the variables $Y^{\mu}, b_{4}, c_{4}, \tilde{b}_{4}, \tilde{c}_{4}$ as the $I R$ variables, and the $X^{\mu}, \psi^{\mu}, \tilde{\psi}^{\mu}$ as the $U V$ variables.

The IR fields are legitimate, weakly interacting variables, suitable for describing the $X^{+} \rightarrow+\infty$ limit of the theory.

There is an exact duality between the UV description and the IR description.

In the case at hand, loop corrections are trivial on both sides, and the duality inverts the expansion parameter for conformal perturbation theory rather than for the loop expansion.

Promoting M to a dynamical object

However, the central charge of the fermion theory has dropped from its original value of 1 in the $\psi^{ \pm}$description, to a central charge of -11 for a $b c$ ghost system with weights $(3 / 2,-1 / 2)$.

Promoting M to a dynamical object

However, the central charge of the fermion theory has dropped from its original value of 1 in the $\psi^{ \pm}$description, to a central charge of -11 for a $b c$ ghost system with weights $(3 / 2,-1 / 2)$.

In fact, this is a quantum effect.

Promoting M to a dynamical object

However, the central charge of the fermion theory has dropped from its original value of 1 in the $\psi^{ \pm}$description, to a central charge of -11 for a $b c$ ghost system with weights $(3 / 2,-1 / 2)$.

In fact, this is a quantum effect.

This is a subtle point, since the theory has no nontrivial dynamical Feynman diagrams that might generate quantum corrections.

Promoting M to a dynamical object

However, the central charge of the fermion theory has dropped from its original value of 1 in the $\psi^{ \pm}$description, to a central charge of -11 for a bc ghost system with weights $(3 / 2,-1 / 2)$.

In fact, this is a quantum effect.

This is a subtle point, since the theory has no nontrivial dynamical Feynman diagrams that might generate quantum corrections.

Question: How does this work?

Renormalization of the dilaton gradient

It turns out that the natural normal-ordering prescription for the UV variables agrees only up to finite terms with the natural orderings for composite operators in the IR variables.

Renormalization of the dilaton gradient

It turns out that the natural normal-ordering prescription for the UV variables agrees only up to finite terms with the natural orderings for composite operators in the IR variables.

The effect of these finite differences will be to renormalize the dilaton gradient of the system by an amount $\Delta V_{+}=\beta, \Delta V_{-}=0$.

Normal ordering in the UV variables

Using the properties of Feynman diagrams and the equations of motion, we can derive modified OPEs for the UV fields.

Normal ordering in the UV variables

Using the properties of Feynman diagrams and the equations of motion, we can derive modified OPEs for the UV fields.

The natural basis for operators in the UV description is a basis of normal-ordered products
$: X^{\mu_{1}}\left(\rho_{1}\right) \cdots X^{\mu_{m}}\left(\rho_{m}\right) \psi^{\nu_{1}}\left(\sigma_{1}\right) \cdots \psi^{\nu_{n}}\left(\sigma_{n}\right) \tilde{\psi}^{\pi_{1}}\left(\tau_{1}\right) \cdots \tilde{\psi}^{\pi_{p}}\left(\tau_{p}\right):$

- The normal-ordered operator is nonsingular when any of the arguments in the normal ordering symbol approach one another;
- The normal-ordered operators obey the equations of motion. For instance:

$$
\partial_{\tau^{+}} \partial_{\tau^{-}}: X^{-}(\sigma) X^{-}(\tau):=-\frac{i \beta \alpha^{\prime} \mu}{4}: X^{-}(\sigma) \exp \left(\beta X^{+}(\tau)\right) \tilde{\psi}^{+}(\tau) \psi^{+}(\tau):
$$

- The normal ordered product of two " + " operators is equal to the ordinary product;

Normal ordering in the UV variables

- The normal ordered product of a "+" field and a "-" field is defined with the subtraction prescription of the free theory;
- The normal ordered product of two "-" fields has only " + " fields on the right-hand side, and scales as a single power of M;
- In the limit $M \rightarrow 0$, the structure of the algebra of the operators becomes that of the free theory (this property is implied by the three previous properties).

Given these properties, we can derive the full structure of the OPE for UV fields.

Normal ordering in the IR variables

The normal-ordering prescription defined for UV fields is not useful for the IR description.

Normal ordering in the IR variables

The normal-ordering prescription defined for UV fields is not useful for the IR description.
The UV normal ordering : : subtracts terms from the time-ordered product that are proportional to M, which is very large in the IR.

Normal ordering in the IR variables

The normal-ordering prescription defined for UV fields is not useful for the IR description.

The UV normal ordering : : subtracts terms from the time-ordered product that are proportional to M, which is very large in the IR. Define a second normal ordering prescription, appropriate to the IR limit of the theory. In this case we take our basis of operators to be
${ }_{0}^{0} Y^{\mu_{1}}\left(\rho_{1}\right) \cdots Y^{\mu_{m}}\left(\rho_{m}\right) b_{4}\left(\sigma_{1}\right) \cdots b_{4}\left(\sigma_{n}\right) \tilde{b}_{4}\left(\tau_{1}\right) \cdots \tilde{b}_{4}\left(\tau_{\rho}\right) c_{4}\left(\zeta_{1}\right) \cdots c_{4}\left(\zeta_{q}\right) \tilde{c}_{4}\left(\omega_{1}\right) \cdots \tilde{c}_{4}\left(\omega_{r}\right){ }_{0}$,

- The normal-ordered operator is nonsingular when any of the arguments of operators in the normal ordering symbol approach one another;
- The normal-ordered operators obey the equations of motion. For instance:

$$
\partial_{\tau^{+}} \partial_{\tau^{-}}{ }_{\circ}^{\circ} Y^{-}(\sigma) Y^{-}(\tau) \circ{ }_{\circ}^{\circ}=-\frac{i \beta \alpha^{\prime} \circ}{4 \mu} \circ Y^{-}(\sigma) \exp \left(-\beta Y^{+}(\tau)\right) b_{4}(\tau) \tilde{b}_{4}(\tau){ }_{\circ}^{\circ}
$$

Normal ordering in the IR variables

- The normal ordered product of two operators from the set $b_{4}, \tilde{b}_{4}, Y^{+}$is equal to the ordinary product;
- The normal ordered product of a field from the set $c_{4}, \tilde{c}_{4}, Y^{-}$ with a field from the set $b_{4}, \tilde{b}_{4}, Y^{+}$is defined with the subtraction prescription of the free theory;
- The normal ordered product of two fields from the set $c_{4}, \tilde{c}_{4}, Y^{-}$has only fields from the set $b_{4}, \tilde{b}_{4}, Y^{+}$on the right-hand side, and scales as a single power of M^{-1};
- In the limit $M \rightarrow \infty$, the structure of the algebra of the operators becomes that of the free theory of the IR fields.

Normal ordering in the IR variables

The bosonic stress tensor turns out to transform unproblematically, but the fermionic stress tensor picks up a quantum correction due to the mismatch between : : and ${ }_{\circ}^{\circ} \stackrel{\circ}{\circ}$ normal ordering prescriptions.

Normal ordering in the IR variables

The bosonic stress tensor turns out to transform unproblematically, but the fermionic stress tensor picks up a quantum correction due to the mismatch between : : and ${ }_{\circ}^{\circ} \stackrel{\circ}{\circ}$ normal ordering prescriptions.

The corrections amounts to a renormalization of the dilaton gradient:

$$
\begin{aligned}
& \hat{V}_{\mu} \equiv V_{\mu}+\Delta V_{\mu} \\
& \Delta V_{+}=+\beta \quad \Delta V_{-}=0
\end{aligned}
$$

Normal ordering in the IR variables

The bosonic stress tensor turns out to transform unproblematically, but the fermionic stress tensor picks up a quantum correction due to the mismatch between : : and ${ }_{\circ}^{\circ} \stackrel{\circ}{\circ}$ normal ordering prescriptions.

The corrections amounts to a renormalization of the dilaton gradient:

$$
\begin{aligned}
& \hat{V}_{\mu} \equiv V_{\mu}+\Delta V_{\mu} \\
& \Delta V_{+}=+\beta \quad \Delta V_{-}=0
\end{aligned}
$$

We are left with a contribution to the central charge equal to

$$
\begin{aligned}
c^{\text {dilaton }} & =6 \alpha^{\prime} \eta^{\mu \nu} \hat{V}_{\mu} \hat{V}_{\nu}=-6 \alpha^{\prime} q^{2}+6 \sqrt{2} \alpha^{\prime} \beta q \\
& =27-\frac{3 D}{2}
\end{aligned}
$$

Quantum corrections

We have the remaining central charge contributions

- +2 from the Y^{μ}
- -11 from the $b_{4} c_{4}$ system
- $\frac{3}{2}(D-2)$ from the transverse degrees of freedom X^{i}, ψ^{i}
- total free-field contribution of $\frac{3 D}{2}-12$

Quantum corrections

We have the remaining central charge contributions

- +2 from the Y^{μ}
- -11 from the $b_{4} c_{4}$ system
- $\frac{3}{2}(D-2)$ from the transverse degrees of freedom X^{i}, ψ^{i}
- total free-field contribution of $\frac{3 D}{2}-12$

The total central charge in the theory is therefore equal to 15.

Quantum corrections

We have the remaining central charge contributions
-+2 from the Y^{μ}

- -11 from the $b_{4} c_{4}$ system
- $\frac{3}{2}(D-2)$ from the transverse degrees of freedom X^{i}, ψ^{i}
- total free-field contribution of $\frac{3 D}{2}-12$

The total central charge in the theory is therefore equal to 15.
As one moves in the target space from the original theory to $X^{+}=+\infty$, twelve units of central charge are transferred from the light cone fermions $\psi^{ \pm}$to the dilaton gradient.

Quantum corrections

We have the remaining central charge contributions
-+2 from the Y^{μ}

- -11 from the $b_{4} c_{4}$ system
- $\frac{3}{2}(D-2)$ from the transverse degrees of freedom X^{i}, ψ^{i}
- total free-field contribution of $\frac{3 D}{2}-12$

The total central charge in the theory is therefore equal to 15.
As one moves in the target space from the original theory to $X^{+}=+\infty$, twelve units of central charge are transferred from the light cone fermions $\psi^{ \pm}$to the dilaton gradient.

The central charge being transferred to the dilaton gradient does not occur through a loop diagram of massive fields being integrated out.

Quantum corrections

We have the remaining central charge contributions
-+2 from the Y^{μ}

- -11 from the $b_{4} c_{4}$ system
- $\frac{3}{2}(D-2)$ from the transverse degrees of freedom X^{i}, ψ^{i}
- total free-field contribution of $\frac{3 D}{2}-12$

The total central charge in the theory is therefore equal to 15 .
As one moves in the target space from the original theory to $X^{+}=+\infty$, twelve units of central charge are transferred from the light cone fermions $\psi^{ \pm}$to the dilaton gradient.
The central charge being transferred to the dilaton gradient does not occur through a loop diagram of massive fields being integrated out.

Instead, the central charge is transferred through a mismatch of normal-ordering prescriptions appropriate to the free field theories in the two limits $X^{+} \rightarrow \pm \infty$.

Quantum corrections

Break up the supercurrent: $G^{\mathrm{LC}}=\mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4}$, with

$$
\begin{aligned}
\mathbf{1} \equiv-\sqrt{\frac{2}{\alpha^{\prime}}} \psi^{+}\left(\partial_{+} X^{-}\right) & 2 \equiv-\sqrt{\frac{2}{\alpha^{\prime}}} \psi^{-}\left(\partial_{+} X^{+}\right) \\
\mathbf{3 \equiv \sqrt { \alpha ^ { \prime } } q \partial _ { + } \psi ^ { + }} & \mathbf{4} \equiv \sqrt{\alpha^{\prime}} q \partial_{+} \psi^{-}
\end{aligned}
$$

Quantum corrections

Break up the supercurrent: $G^{\mathrm{LC}}=\mathbf{1}+\mathbf{2}+\mathbf{3}+\mathbf{4}$, with

$$
\begin{aligned}
1 \equiv-\sqrt{\frac{2}{\alpha^{\prime}}} \psi^{+}\left(\partial_{+} X^{-}\right) & 2 \equiv-\sqrt{\frac{2}{\alpha^{\prime}}} \psi^{-}\left(\partial_{+} X^{+}\right) \\
\mathbf{3 \equiv \sqrt { \alpha ^ { \prime } }} q \partial_{+} \psi^{+} & 4 \equiv \sqrt{\alpha^{\prime}} q \partial_{+} \psi^{-}
\end{aligned}
$$

The full transformation of the supercurrent from UV to IR variables is

$$
\begin{aligned}
\mathbf{1}_{\text {classical }} & =-2 \sqrt{\frac{2}{\alpha^{\prime}}} \circ\left[\left(\partial_{+} c_{4}\right)\left(\partial_{+} Y^{-}\right)+\beta c_{4}\left(\partial_{+} Y^{+}\right)\left(\partial_{+} Y^{-}\right)-\frac{i \beta \alpha^{\prime}}{2}\left(\partial_{+} c_{4}\right) b_{4} c_{4}\right] \circ \\
\mathbf{1}_{\text {quantum }} & =-\beta \sqrt{\frac{\alpha^{\prime}}{2}} \partial_{+}^{2} c_{4}-2 \beta^{2} \sqrt{\frac{\alpha^{\prime}}{2}} c_{4} \partial_{+}^{2} Y^{+} \\
2+4 & =\frac{q}{2} \sqrt{\alpha^{\prime}} b_{4} \\
3 & =2 q \sqrt{\alpha^{\prime}}\left(\partial_{+}^{2} c_{4}\right)+2 \sqrt{\frac{2}{\alpha^{\prime}}}\left(\partial_{+} Y^{+}\right)\left(\partial_{+} c_{4}\right)+2 \sqrt{\frac{2}{\alpha^{\prime}}} c_{4}\left(\partial_{+}^{2} Y^{+}\right)
\end{aligned}
$$

Quantum corrections

Expressed in b_{4}, c_{4}, Y variables, the supercurrent is manifestly finite in the limit $X^{+} \rightarrow+\infty$ (as is the stress tensor).

Quantum corrections

Expressed in b_{4}, c_{4}, Y variables, the supercurrent is manifestly finite in the limit $X^{+} \rightarrow+\infty$ (as is the stress tensor).

The b_{4}, c_{4}, Y fields can indeed be regarded as dual variables that render the theory free in the $M \rightarrow \infty$ limit.

The IR limit

We now focus strictly on the limiting regime of the IR theory.

The IR limit

We now focus strictly on the limiting regime of the IR theory.
In practice, this means that, when written in IR variables, we discard the $\exp \left(-\beta Y^{+}\right) \tilde{b}_{4} b_{4}$ term in the action, as well as any $\exp \left(-\beta Y^{+}\right)$terms in the supercurrent and stress tensor.

The IR limit

We now focus strictly on the limiting regime of the IR theory.
In practice, this means that, when written in IR variables, we discard the $\exp \left(-\beta Y^{+}\right) \tilde{b}_{4} b_{4}$ term in the action, as well as any $\exp \left(-\beta Y^{+}\right)$terms in the supercurrent and stress tensor.

Rescale the b_{4} field so that the new b fermion appears in the supercurrent with unit normalization. To preserve all canonical commutators, however, we will rescale the c_{4} field oppositely:

$$
\begin{aligned}
b_{4} & =\frac{2}{q \sqrt{\alpha^{\prime}}} b_{3}=\beta \sqrt{2 \alpha^{\prime}} b_{3} \\
c_{4} & =\frac{q \sqrt{\alpha^{\prime}}}{2} c_{3}=\frac{1}{\beta \sqrt{2 \alpha^{\prime}}} c_{3}
\end{aligned}
$$

The IR limit

The invariance properties of the system under spatial reflection are still unclear.

The IR limit

The invariance properties of the system under spatial reflection are still unclear.

The stress tensor is invariant under the discrete symmetry reflecting the spacelike vector orthogonal to \hat{V}_{μ}.

The IR limit

The invariance properties of the system under spatial reflection are still unclear.

The stress tensor is invariant under the discrete symmetry reflecting the spacelike vector orthogonal to \hat{V}_{μ}.

The supercurrent is not, however, since V_{μ} and ΔV_{μ} appear independently in G^{LC}.

The IR limit

The invariance properties of the system under spatial reflection are still unclear.

The stress tensor is invariant under the discrete symmetry reflecting the spacelike vector orthogonal to \hat{V}_{μ}.
The supercurrent is not, however, since V_{μ} and ΔV_{μ} appear independently in G^{LC}.
We would like to find field variables that render this discrete symmetry more manifest, such that only the vector \hat{V}_{μ} enters $G^{\text {LC }}$.

The IR limit

The invariance properties of the system under spatial reflection are still unclear.

The stress tensor is invariant under the discrete symmetry reflecting the spacelike vector orthogonal to \hat{V}_{μ}.
The supercurrent is not, however, since V_{μ} and ΔV_{μ} appear independently in G^{LC}.

We would like to find field variables that render this discrete symmetry more manifest, such that only the vector \hat{V}_{μ} enters $G^{\text {LC }}$. We therefore define new variables b_{2}, c_{2}, Z^{μ} by:

$$
\begin{aligned}
Y^{ \pm}= & Z^{ \pm} \pm \frac{i}{2 \beta} c_{2} \partial_{+} c_{2} \\
b_{3}= & b_{2}-\frac{2}{\beta \alpha^{\prime}}\left(\partial_{+} c_{2}\right)\left(\partial_{+} Z^{+}-\partial_{+} Z^{-}\right)-\frac{1}{\beta \alpha^{\prime}} c_{2}\left(\partial_{+}^{2} Z^{+}-\partial_{+}^{2} Z^{-}\right) \\
& +\frac{i}{2 \beta^{2} \alpha^{\prime}} c_{2}\left(\partial_{+} c_{2}\right)\left(\partial_{+}^{2} c_{2}\right) \\
c_{3}= & c_{2}
\end{aligned}
$$

The IR limit

The worldsheet supersymmetry is now realized nonlinearly.

The IR limit

The worldsheet supersymmetry is now realized nonlinearly.
The bosons Z^{μ} transform into their own derivatives, times a goldstone fermion:

$$
\left[Q, Z^{\mu}\right]=i c_{2} \partial_{+} Z^{\mu} \quad\left\{Q, c_{2}\right\}=1+i c_{2} \partial_{+} c_{2}
$$

where

$$
Q \equiv \frac{1}{2 \pi} \int d \sigma_{1} G(\sigma)
$$

The IR limit

The worldsheet supersymmetry is now realized nonlinearly.
The bosons Z^{μ} transform into their own derivatives, times a goldstone fermion:

$$
\left[Q, Z^{\mu}\right]=i c_{2} \partial_{+} Z^{\mu} \quad\left\{Q, c_{2}\right\}=1+i c_{2} \partial_{+} c_{2}
$$

where

$$
Q \equiv \frac{1}{2 \pi} \int d \sigma_{1} G(\sigma)
$$

In the sector involving the transverse fields X_{i}, ψ^{i}, supersymmetry is realized in the usual linear fashion:

$$
\begin{aligned}
{\left[Q, X_{i}\right] } & =i \sqrt{\frac{\alpha^{\prime}}{2}} \psi^{i} \\
\left\{Q, \psi^{i}\right\} & =\sqrt{\frac{2}{\alpha^{\prime}}} \partial_{+} X_{i}
\end{aligned}
$$

The IR limit

At first sight, our realization of supersymmetry in the full theory is unfamiliar, with worldsheet supersymmetry realized linearly in one sector and nonlinearly in another.

The IR limit

At first sight, our realization of supersymmetry in the full theory is unfamiliar, with worldsheet supersymmetry realized linearly in one sector and nonlinearly in another.

However, it turns out that this realization is equivalent to one for which worldsheet supersymmetry is realized completely nonlinearly in all sectors.

The IR limit

At first sight, our realization of supersymmetry in the full theory is unfamiliar, with worldsheet supersymmetry realized linearly in one sector and nonlinearly in another.

However, it turns out that this realization is equivalent to one for which worldsheet supersymmetry is realized completely nonlinearly in all sectors.

We now perform a final transformation on the system. Defining the Hermitian infinitesimal generator

$$
g \equiv-\frac{i}{2 \pi} \int d \sigma_{1} c_{2}(\sigma) G^{\perp}(\sigma)
$$

we transform all operators in the theory according to

$$
\mathcal{O} \rightarrow U \mathcal{O} U^{-1}
$$

with

$$
U \equiv \exp (i g)
$$

The IR limit

The total final supercurrent $G \equiv G^{\mathrm{LC}}+G^{\perp}$ is then

$$
\begin{aligned}
G= & b_{1}+i c_{1}^{\prime} b_{1} c_{1}-c_{1} T^{\mathrm{mat}}+c_{1}^{\prime \prime}\left(-\frac{1}{6} c^{\perp}-\frac{1}{2}+\alpha^{\prime} q^{2}\right) \\
& +c_{1} c_{1}^{\prime} c_{1}^{\prime \prime}\left(-\frac{i}{4} \alpha^{\prime} q^{2}-\frac{i}{2}+\frac{i}{24} c^{\perp}\right)
\end{aligned}
$$

The IR limit

The total final supercurrent $G \equiv G^{\mathrm{LC}}+G^{\perp}$ is then

$$
\begin{aligned}
G= & b_{1}+i c_{1}^{\prime} b_{1} c_{1}-c_{1} T^{\mathrm{mat}}+c_{1}^{\prime \prime}\left(-\frac{1}{6} c^{\perp}-\frac{1}{2}+\alpha^{\prime} q^{2}\right) \\
& +c_{1} c_{1}^{\prime} c_{1}^{\prime \prime}\left(-\frac{i}{4} \alpha^{\prime} q^{2}-\frac{i}{2}+\frac{i}{24} c^{\perp}\right)
\end{aligned}
$$

And the total transformed stress tensor is

$$
T=T^{\mathrm{mat}}+T^{b_{1} c_{1}}
$$

with

$$
T^{b_{1} c_{1}}=-\frac{3 i}{2} \partial_{+} c_{1} b_{1}-\frac{i}{2} c_{1} \partial_{+} b_{1}+\frac{i}{2} \partial_{+}\left(c_{1} \partial_{+}^{2} c_{1}\right)
$$

The IR limit

The total final supercurrent $G \equiv G^{\mathrm{LC}}+G^{\perp}$ is then

$$
\begin{aligned}
G= & b_{1}+i c_{1}^{\prime} b_{1} c_{1}-c_{1} T^{\mathrm{mat}}+c_{1}^{\prime \prime}\left(-\frac{1}{6} c^{\perp}-\frac{1}{2}+\alpha^{\prime} q^{2}\right) \\
& +c_{1} c_{1}^{\prime} c_{1}^{\prime \prime}\left(-\frac{i}{4} \alpha^{\prime} q^{2}-\frac{i}{2}+\frac{i}{24} c^{\perp}\right)
\end{aligned}
$$

And the total transformed stress tensor is

$$
T=T^{\mathrm{mat}}+T^{b_{1} c_{1}}
$$

with

$$
T^{b_{1} c_{1}}=-\frac{3 i}{2} \partial_{+} c_{1} b_{1}-\frac{i}{2} c_{1} \partial_{+} b_{1}+\frac{i}{2} \partial_{+}\left(c_{1} \partial_{+}^{2} c_{1}\right)
$$

Plugging in $q=\sqrt{\frac{D-10}{4 \alpha^{\prime}}}$ and $c^{\perp}=\frac{3}{2}(D-2)$:

$$
G=b_{1}+i c_{1}^{\prime} b_{1} c_{1}-c_{1} T^{\mathrm{mat}}-\frac{5}{2} c_{1}^{\prime \prime}
$$

The IR limit

The $X^{+} \rightarrow \infty$ limit of our solution is described by a free worldsheet theory with a $b c$ ghost system of weights $(3 / 2,-1 / 2)$, D free scalars Z^{M} and $D-2$ free fermions $\psi^{Z^{i}}$.

The IR limit

The $X^{+} \rightarrow \infty$ limit of our solution is described by a free worldsheet theory with a $b c$ ghost system of weights $(3 / 2,-1 / 2)$, D free scalars Z^{M} and $D-2$ free fermions $\psi^{Z^{i}}$.

The total central charge of the $Z^{M}, \psi^{Z^{i}}$ system is 26 , and the contribution of -11 from the $b_{1} c_{1}$ system brings the total central charge to 15 .

The IR limit

The $X^{+} \rightarrow \infty$ limit of our solution is described by a free worldsheet theory with a $b c$ ghost system of weights $(3 / 2,-1 / 2)$, D free scalars Z^{M} and $D-2$ free fermions $\psi^{Z^{i}}$.

The total central charge of the $Z^{M}, \psi^{Z^{i}}$ system is 26 , and the contribution of -11 from the $b_{1} c_{1}$ system brings the total central charge to 15 .

The theory has critical central charge for a SCFT interpreted as the worldsheet theory of a RNS superstring in conformal gauge.

Berkovits-Vafa construction

This type of superconformal field theory belongs to a class of constructions introduced by Berkovits and Vafa, in which the bosonic string is embedded in the solution space of the superstring. [hep-th/9310170]

Berkovits-Vafa construction

This type of superconformal field theory belongs to a class of constructions introduced by Berkovits and Vafa, in which the bosonic string is embedded in the solution space of the superstring. [hep-th/9310170]

For a conformal field theory $T^{\text {mat }}$ with a central charge of 26 , it is possible to construct a corresponding superconformal field theory defined by G, T with central charge 15 .

Berkovits-Vafa construction

This type of superconformal field theory belongs to a class of constructions introduced by Berkovits and Vafa, in which the bosonic string is embedded in the solution space of the superstring. [hep-th/9310170]

For a conformal field theory $T^{\text {mat }}$ with a central charge of 26 , it is possible to construct a corresponding superconformal field theory defined by G, T with central charge 15 .

Upon treating the superconformal theory as a superstring theory, the resulting physical states and scattering amplitudes are identical to those of the theory defined by $T^{\text {mat }}$ when treated as a bosonic string theory.

Berkovits-Vafa construction

The construction can be summarized as follows:

- Given a conformal stress tensor $T^{\text {mat }}$ with central charge 26 , a ghost system $b_{1} c_{1}$ can be introduced with weights $(3 / 2,-1 / 2)$ and stress tensor $T^{b_{1} c_{1}}$.

Berkovits-Vafa construction

The construction can be summarized as follows:

- Given a conformal stress tensor $T^{\text {mat }}$ with central charge 26 , a ghost system $b_{1} c_{1}$ can be introduced with weights $(3 / 2,-1 / 2)$ and stress tensor $T^{b_{1} c_{1}}$.
- This gives rise to a fermionic primary current of weight $3 / 2$:

$$
G \equiv b_{1}+i c_{1}^{\prime} b_{1} c_{1}-c_{1} T^{\mathrm{mat}}-\frac{5}{2} c_{1}^{\prime \prime}
$$

Berkovits-Vafa construction

The construction can be summarized as follows:

- Given a conformal stress tensor $T^{\text {mat }}$ with central charge 26 , a ghost system $b_{1} c_{1}$ can be introduced with weights (3/2, -1/2) and stress tensor $T^{b_{1} c_{1}}$.
- This gives rise to a fermionic primary current of weight $3 / 2$:

$$
G \equiv b_{1}+i c_{1}^{\prime} b_{1} c_{1}-c_{1} T^{\mathrm{mat}}-\frac{5}{2} c_{1}^{\prime \prime}
$$

- This closes on the stress tensor of the theory:

$$
G(\sigma) G(\tau) \simeq \frac{10 i}{\left(\tau^{+}-\sigma^{+}\right)^{3}}+\frac{2 i}{\left(\tau^{+}-\sigma^{+}\right)} T^{\mathrm{total}}(\tau)
$$

where

$$
T^{\text {total }} \equiv T^{\text {mat }}+T^{b_{1} c_{1}}
$$

Berkovits-Vafa construction

- This defines a superconformal theory of central charge 15.

Berkovits-Vafa construction

- This defines a superconformal theory of central charge 15.
- To construct physical states of the corresponding superstring theory, one starts with a Virasoro primary state $|\mathcal{U}\rangle$ of weight 1 in the theory defined by $T^{\text {mat }}$:

$$
\begin{aligned}
& L_{n}^{\operatorname{mat}}|\mathcal{U}\rangle=0 \quad n \geq 1 \\
& L_{0}^{\operatorname{mat}}|\mathcal{U}\rangle=1
\end{aligned}
$$

Berkovits-Vafa construction

- This defines a superconformal theory of central charge 15.
- To construct physical states of the corresponding superstring theory, one starts with a Virasoro primary state $|\mathcal{U}\rangle$ of weight 1 in the theory defined by $T^{\text {mat }}$:

$$
\begin{aligned}
& L_{n}^{\operatorname{mat}}|\mathcal{U}\rangle=0 \quad n \geq 1 \\
& L_{0}^{\operatorname{mat}}|\mathcal{U}\rangle=1
\end{aligned}
$$

We have an exact solution describing a dynamical transition between string theories that differ from one another in their worldsheet gauge algebra.

Transition to bosonic string theory

This transition follows an instability in an initial D-dimensional type 0 theory.

Transition to bosonic string theory

This transition follows an instability in an initial D-dimensional type 0 theory.

The dynamics then spontaneously break worldsheet supersymmetry, giving rise to a bosonic string theory in the same number of dimensions deep inside the tachyonic phase.

Outline

Overview of quintessent cosmology and linear dilaton backgrounds

Supercritical string theory: spacetime effective action

Stability in time-dependent backgrounds

Bosonic string solutions with nonzero tachyon

Dimension-changing solutions in the type 0 string

Transitions from type 0 to bosonic string theory

Conclusions

A partial catalog of exact transitions

start	$D_{\text {init }}$	$\exp \left(-\beta \chi^{+}\right) \mathcal{T}$	end	$D_{\text {fin }}$	comments
bos	D	$\mu^{2} X_{2}^{2}$	bos	D-1	tuned
0	D	$\mu X_{2} X_{3}$	0	D-2	natural
0 (orb)	D	$\mu X_{i+1} Y_{i}$	II	10	stable
0	D	μ	bos	$\begin{gathered} \mathrm{D} \\ +\frac{1}{2}(\mathrm{D}-2) \\ \hline \end{gathered}$	tuned
UHE	10	μX_{2}	HE9	9	stable
$\mathrm{HO}^{(+1)}$	11	μX_{2}	HO	10	stable
$\mathrm{HO}^{(+1) /}$	11	μX_{2}	HO	10	natural
$\begin{gathered} \hline \mathrm{HO}^{(+1)} \\ \text { (orb) } \\ \hline \end{gathered}$	11	μX_{2}	HO	10	stable
$\begin{aligned} & \mathcal{N} \\ & =2 \end{aligned}$	$\begin{gathered} 2 D_{c} \\ -1 \end{gathered}$	$\mu \phi_{2} \phi_{3}$	$\begin{gathered} \mathcal{N} \\ =2 \end{gathered}$	$\begin{gathered} 2 D_{c} \\ -5 \end{gathered}$	natural
$\begin{gathered} \mathcal{N} \\ =2 \end{gathered}$	$\begin{gathered} 2 D_{c} \\ -1 \end{gathered}$	μ	bos	$\begin{gathered} 3 D_{c} \\ -2 \end{gathered}$	tuned

The Big Picture - Part I

The Big Picture - Part II

The Big Picture - Part III

Conclusions

- Supercritical string theory has some surprising and interesting properties.

Conclusions

- Supercritical string theory has some surprising and interesting properties.
- We see that the supercritical string can be connected to the duality web of critical string theory.

Conclusions

- Supercritical string theory has some surprising and interesting properties.
- We see that the supercritical string can be connected to the duality web of critical string theory.
- We have found solutions that interpolate between superstring theory and purely bosonic string theory.

Conclusions

- Supercritical string theory has some surprising and interesting properties.
- We see that the supercritical string can be connected to the duality web of critical string theory.
- We have found solutions that interpolate between superstring theory and purely bosonic string theory.
- The surprising feature of these connections is the crucial role of time dependence.

Conclusions

- Supercritical string theory has some surprising and interesting properties.
- We see that the supercritical string can be connected to the duality web of critical string theory.
- We have found solutions that interpolate between superstring theory and purely bosonic string theory.
- The surprising feature of these connections is the crucial role of time dependence.
- There may be other interesting links between theories that we have yet to discover.

Conclusions

- Supercritical string theory has some surprising and interesting properties.
- We see that the supercritical string can be connected to the duality web of critical string theory.
- We have found solutions that interpolate between superstring theory and purely bosonic string theory.
- The surprising feature of these connections is the crucial role of time dependence.
- There may be other interesting links between theories that we have yet to discover.
- Thank you!

