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It would be useful to understand how strongly nonsupersymmetric
string theories – such as the bosonic string, as well as string
theories in supercritical dimensions – are related to the more
supersymmetric versions of string theory.

In this talk I will describe a class of α′-exact cosmological solutions
of string theory that interpolate in time between theories with
different numbers of spacetime dimensions and different amounts
of worldsheet and spacetime supersymmetry.

These cosmologies connect supercritical string theories to the more
familiar string duality web in ten dimensions.

They also provide a precise link between supersymmetric and
purely bosonic string theory.
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Let’s start with a very general class of cosmological models.

The metric for a spatially flat (k = 0) FRW cosmology is

ds2 = −dt2 + a(t)2dx idx i

where i = 1, · · · ,D − 1.

The equation of motion for the scale factor a(t):

ä

a
= −D − 3 + w(D − 1)

(D − 1)(D − 2)
ρ

where w ≡ p/ρ is the state equation.

Consider a theory of a real scalar field φ with Lagrangian

Lφ =
1

κ2

√
− det G

[

1

2
(∂µφ)(∂µφ) − V(φ)

]

where

V(φ) ≡ c exp (γφ) , c , γ > 0
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At this point, we adopt the ansatz that our solution exhibits a
constant equation of state w .

It follows that φ̇2, H2 and V all scale as t−2, so we find the
general expressions

φ(t) = λ log(t/t1)

a(t) = a0

(

t

t0

)α

for some α, λ.

This amounts to a direct relation between ȧ and a, which can be
integrated to yield the following:

α =
2

(1 + w)(D − 1)

γ2 =
2(D − 1)(w + 1)

D − 2
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Linear dilaton background

Because c > 0, the energy density ρ is positive, and the
cosmological scale accelerates as a function of FRW time if
−1 ≤ w < wcrit, where

wcrit = −D − 3

D − 1

in D spacetime dimensions.

The global causal structure of the solution therefore depends on
whether w is less than, greater than, or equal to the critical value
wcrit.

The spatial slice t = 0 defines an initial singularity in all three
cases.

The precise nature of this singularity and the nature of the
asymptotic future t → +∞, however, depend on the state
equation of the cosmology.
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We can rewrite the metric in a canonical form for a conformally
flat spacetime. We define a new time coordinate t̄ via the equation

t̄ ≡
(

(D − 1)(1 + w)

(D − 1)w + (D − 3)
t

2
(D−1)(1+w)

0 a−1
0

)

t
(D−1)w+(D−3)

(D−1)(1+w)

In these coordinates, the metric takes the form

ds2 = ω(t̄)2
[

−dt̄2 + dx idx i
]

= ω(t̄)2
[

−dt̄2 + dr2 + rD−2dΩ2
D−2

]

where we have defined

ω(t̄) ≡ l

(

(D − 1)w + (D − 3)

(D − 1)(1 + w)
t̄

)
2

(D−1)w+(D−3)

l ≡ a0

(

a0

t0

) 2
(D−1)w+(D−3)
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fibered over each diagram and conformally compactifies the (r , t)
plane using the transformation

r ≡ sinχ
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Linear dilaton background

To construct Penrose diagrams, one ignores the (D − 2)-sphere
fibered over each diagram and conformally compactifies the (r , t)
plane using the transformation

r ≡ sinχ

cosχ+ cos τ
t̄ ≡ sin τ

cosχ+ cos τ

In these coordinates, the metric on the (r , t) plane becomes

ds2 =
l2

4

(sin |τ |)2∆
[

cos
(χ+τ

2

)

cos
(χ−τ

2

)]2+2∆

∣

∣

∣

∣

(D − 1)w + (D − 3)

2(D − 1)(1 + w)

∣

∣

∣

∣

2∆

×(−dτ2 + dχ2)

with

∆ ≡ 2

(D − 1)w + (D − 3)



Linear dilaton background

For −1 < w < wcrit, the constant ∆ is negative and the range of
the τ and χ coordinates is

τ ∈ [−π, 0] χ ∈ [0, τ + π] (accelerating universe).

For w > wcrit, the quantity ∆ becomes positive, and we have

τ ∈ [0, π] χ ∈ [0, π − τ ] (decelerating universe).
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(τ,χ) = (π,0)

null
infinity

Penrose diagram of the decelerating universe (w > wcrit). The
initial singularity is spacelike, and the future boundary is null.
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Future spacelike infinity

Past null
singularity

(τ,χ) = (−π,0)

(τ,χ) = (0,π)

horizon
Apparent

Future
horizon

Penrose diagram of the accelerating (−1 < w < wcrit) universe.
The initial singularity is null, and the future spacelike boundary is
obscured from observers by a horizon.
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Linear dilaton background

Future
null

infinity

Past null singularity

(τ,χ) = (π,0)

(τ,χ) = (0,0)

Penrose diagram of the universe with critical equation of state
(w = wcrit). The initial singularity is null, as is the future
boundary. It is conformally equivalent to Minkowski space
(conventional big bang, asymptotic infinity, and ordinary final
states).
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metric and dilaton appears as

Seff =
1

2κ2

∫

dDx
√

− detG (S)exp (−2Φ)

[

−D − 26

3α′
+ R (S) + 4(∂Φ)2

]

Higher dimension terms are dropped: such terms in the tree-level
action are suppressed by powers of α′ = 1/(2πTstring), where
Tstring is the fundamental string tension.

We may rewrite the action in terms of the Einstein metric using
the field redefinition

G (S)
µν = exp

(

4Φ

D − 2

)

G (E)
µν

We may also rescale Φ → 1
2

√
D − 2 φ. . .
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Supercritical string theory

We obtain:

Seff =
1

2κ2

∫

d
D
X

√

− det G (E )

[

−2(D − 26)

3α′
exp

(

2φ√
D − 2

)

+ R
(E ) − (∂φ)2

]

This is the action for a quintessent cosmology, with coefficients
now defined by the following values:

γ =
2√

D − 2
c =

D − 26

3α′

We therefore recover a quintessent solution with equation of state

w = −D − 3

D − 1
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Supercritical string theory

The tree-level potential of the string theory gives rise to an
equation of state at the boundary between accelerating and
decelerating cosmological backgrounds.

The resulting spacetime is globally conformally equivalent to
Minkowski space.

In retrospect, this must have been the case: The worldsheet theory
of the string in this background is defined to have a target space
with string frame metric ηµν , and coordinates Xµ that are infinite
in extent.

The equation of state w = −D−3
D−1 with positive energy also

describes negative curvature dominated cosmology.

Maximal SUSY breaking at weak coupling?
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Supercritical string theory
The general quintessent solution is of the form

Φ = Φ0 −
D − 2

2
ln

(

t

t0

)

a =
a0

t0
t

We have the relation

tFRW = t0 exp

(

+
2q tconf

D − 2

)

So when we move to coordinates in which the metric is manifestly
conformally flat and we decanonicalize the scalar field, we find that
the dilaton is logarithmic as a function of FRW time, and linear as
a function of conformal time:

ds2 =
a2
0

t2
0

t2
(

−dt2
conf + dx idx i

)

= a2ηµνdxµdxν (1)

Φ = Φ0 − q tconf
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In time-dependent backgrounds there is no obvious or
natural definition of stability.

One must take into account the coupling of the background fields
to the string modes, which is suppressed by a factor of the string
coupling gs ∼ eφ.

Exponentially growing modes will have decreasing effect on the
remaining degrees of freedom in the theory if they grow more
slowly than g−1

s .

A useful definition, therefore, is that unstable modes must grow
faster than g−1

s at late times.



Stability

Consider a massless scalar coupled to the string:

Lσ = − 1

2κ2

√

− det G (S)e−2Φ(∂σ)2 = − 1

2κ2

√

− det G (E)(∂σ)2



Stability

Consider a massless scalar coupled to the string:

Lσ = − 1

2κ2

√

− det G (S)e−2Φ(∂σ)2 = − 1

2κ2

√

− det G (E)(∂σ)2

The scalar field has solutions of the form

σ = σ∞ − ξ t−(D−2)

where σ∞ and ξ are constants of motion that can take arbitrary
real values.



Stability

Consider a massless scalar coupled to the string:

Lσ = − 1

2κ2

√

− det G (S)e−2Φ(∂σ)2 = − 1

2κ2

√

− det G (E)(∂σ)2

The scalar field has solutions of the form

σ = σ∞ − ξ t−(D−2)

where σ∞ and ξ are constants of motion that can take arbitrary
real values.

The modes of the field σ asymptote to the constant value σ∞ as
t → ∞.



Stability

Consider a massless scalar coupled to the string:

Lσ = − 1

2κ2

√

− det G (S)e−2Φ(∂σ)2 = − 1

2κ2

√

− det G (E)(∂σ)2

The scalar field has solutions of the form

σ = σ∞ − ξ t−(D−2)

where σ∞ and ξ are constants of motion that can take arbitrary
real values.

The modes of the field σ asymptote to the constant value σ∞ as
t → ∞.

From the point of view of the Einstein frame, this effect is due to
Hubble friction; in the string frame this behavior is understood to
be caused by the drag force arising from the interaction between σ
and the linear dilaton.
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Quanta of the string are necessarily coupled to the flat metric. To
recover fluctuations in such a form we must introduce a rescaled
field σ̃:

σ̃ ≡ e−Φσ

This induces a mass term for the rescaled field that represents a
proper quantum of string:

e
−2Φ(∂σ)2 = (∂σ̃)2 + σ̃

2(∂Φ)2 + 2σ̃(∂σ̃) [(∂Φ)background + (∂Φ)fluctuation]

◮ The fluctuation term represents a trilinear vertex that we
discard.

◮ The background term is constant, so its product with σ̃ ∂σ̃
amounts to a total derivative.
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The mass term for the rescaled field is tachyonic, and equal to
−q2:

Lσ̃ ∼ − 1

2κ2

[

(∂σ̃)2 − q2σ̃2
]

The criterion for stability we proposed was that gs times the
canonical field σ̃ not increase exponentially with time.

Since gs σ̃ is just σ (the original field appearing in the spacetime
action in front of exp (−2Φ)), the requirement for physical stability
is that modes normalized to have the factor exp (−2Φ) in their
kinetic term should shrink exponentially in the future (or at least
remain constant).

So, canonical modes may grow exponentially in time, but they do
not necessarily represent a physical instability: the exponential
growth is countered by the shrinking string coupling.

[Hellerman, IS: hep-th/0611317; Aharony, Silverstein: hep-th/0612031]
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Stability

We are interested in “truly tachyonic” perturbations of unstable
string theories. In tbe bosonic string, for instance, the tachyon
T (X ) couples to the worldsheet as a normal-ordered potential
: T (X ) :.

We will now discuss a large class of solvable and exactly marginal
perturbations of this form.
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Bubble of nothing
Consider a theory with stress tensor

T++ = − 1

α′ : ∂σ+Xµ∂σ+Xµ : +∂2
σ+(VµXµ)

T−− = − 1

α′ : ∂σ−Xµ∂σ−Xµ : +∂2
σ−(VµXµ)

where colons represent normal ordering of the 2D theory. Here, σ±

are particular light-cone combinations of the worldsheet
coordinates σ0,1:

σ± = −σ0 ± σ1
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T++ = − 1

α′ : ∂σ+Xµ∂σ+Xµ : +∂2
σ+(VµXµ)

T−− = − 1

α′ : ∂σ−Xµ∂σ−Xµ : +∂2
σ−(VµXµ)

where colons represent normal ordering of the 2D theory. Here, σ±

are particular light-cone combinations of the worldsheet
coordinates σ0,1:

σ± = −σ0 ± σ1

Physical states of the string correspond to local operators U that
are Virasoro primaries of weight one. That is, their operator
product expansion (OPE) with the stress tensor satisfies:

T++(σ)U(τ) ≃ U(τ)

(σ+ − τ+)2
+

∂+U(τ)

σ+ − τ+

and similarly for T−−,
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Bubble of nothing
A profile T (X ) for the tachyon corresponds to the vertex operator

UM ≡: T (X ) :

and admits the following on-shell condition:

∂µ∂
µT (X ) − 2V µ∂µT (X ) +

4

α′ T (X ) = 0

For tachyon profiles of the form

T (X ) = µ2exp (BµXµ)

this condition is

B2 − 2V · B = −4/α′

A general value of Bµ will lead to a nontrivial interacting theory
when the strength µ2 of the perturbation is treated as
non-infinitesimal.
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Bubble of nothing

There is a special set of choices for Bµ that renders the 2D theory
well-defined and conformal to all orders in perturbation theory.

We choose the first term in the linearized tachyon equation of
motion to vanish separately.

This is tantamount to choosing the vector Bµ to be null. This
renders the vertex operator : exp (BµXµ) : non-singular in the
vicinity of itself.

We therefore put Bµ in the form

B0 = B1 ≡ β/
√

2

Bi = 0, i ≥ 2
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Bubble of nothing
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region, and the tachyon increases into the future.

This gives rise to a particularly simple quantum theory. The kinetic
term for X± appears as

L ∼ − 1

2πα′

[

(∂σ0X+)(∂σ0X−) − (∂σ1X+)(∂σ1X−)
]

The propagator for the X± fields is therefore oriented.

X+� X−
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◮ The X field has oriented propagators.

◮ All the interaction vertices in the theory depend only on X+.

◮ There are no non-trivial Feynman diagrams in the theory.

◮ This constitutes an interacting quantum theory, without
quantum corrections.

(In conformal gauge, prior to enforcing gauge constraints, the
theory is not unitary.)

The tachyon couples to the worldsheet in the term

L ∼ − 1

2π
µ2exp

(

βX+
)

Classically, X+ is harmonic, and acts as a source for X−.
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X+ = f+(σ+) + f−(σ−)

the general solution for X− can be expressed as follows:
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Bubble of nothing

By writing the solution to the Laplace equation for X+ as

X+ = f+(σ+) + f−(σ−)

the general solution for X− can be expressed as follows:

X− = g+(σ+) + g−(σ−) +
α′βµ2

4

[∫

∞

σ+
dy+exp

(

βf+(y+)
)

] [∫

∞

σ−

dy−exp
(

βf−(y−)
)

]

We thus see that the theory is exactly solvable.

All interaction vertices in the theory depend only on X+, and
therefore correspond to diagrams composed strictly from outgoing
lines:

� ,� ,� , . . . ,�
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Physical interpretation

The solution can be thought of as a phase boundary in spacetime
between the T = 0 phase and the T > 0 phase.

The spacetime picture is therefore a phase bubble expanding out
from a nucleation point:
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The state collides with the bubble wall and is forced out of the
region with nonzero tachyon. (The solution has µ2 = 1, β = .1,

and the trajectory corresponds to p+ = 3, H⊥ ≡ α′p2
i

2 = 4.)



Physical interpretation

We can also plot the velocity of the particle as a function of time:
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So the particle propagates until it hits the bubble wall, where the
exponential term becomes important. At that point, the speed of
the particle rapidly goes to −1.
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Physical interpretation

Absolutely no matter (including gravitons) can enter the region of
nonzero tachyon.

The solution can be thought of as a bubble of nothing.
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Dimension-changing solutions in the bosonic string

Let’s now inroduce some dependence on a third direction:

T (X ) = µ2
0 exp

(

βX+
)

− µ2
k cos(kX2)exp

(

βkX+
)

with

qβk =
√

2

(

2

α′ −
1

2
k2

)
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Let’s now inroduce some dependence on a third direction:

T (X ) = µ2
0 exp

(

βX+
)

− µ2
k cos(kX2)exp

(

βkX+
)

with

qβk =
√

2

(

2

α′ −
1

2
k2

)

This is exactly marginal when the wavelength k−1 of the tachyon
is long compared to the string scale:

T (X+,X2) = +
µ2

2α′ exp
(

βX+
)

: X 2
2 : +T0(X

+)

T0(X
+) =

µ2 X+

α′ q
√

2
exp

(

βX+
)

+ µ′2 exp
(

βX+
)
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States with modes of X2 excited are pushed out along the bubble
wall: the physics is essentially the same as the bubble of nothing.

At late times, the adiabatic theorem is satisfied to a better
approximation, and these modes become frozen in an excited state.

So these string states are pushed out to infinity and disappear from
the theory in the late-time limit:
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These propagate through the domain wall and into the bubble

region.
The result is that the amount of matter on the worldsheet
decreases dynamically as a function of time.
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Dimension-changing solutions in the bosonic string
In other words, the number of dimensions in the target space

decreases as a function of time.

Question: What happens to the central charge if the spacetime
dimension shifts? How can the perturbation be marginal?

The theory is solvable, so we should be able to answer this
question exactly.

In fact, quantum corrections in this theory truncate at one-loop
order:

� =� +� +

� +� +� + (perms.)
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Dimension-changing solutions in the bosonic string

The one-loop diagrams can be thought of as a set of effective
vertices for X+, associated with integrating out the massive field
X2.

As you approach the domain wall, there are a number of massive
string modes that acquire expectation values, and there are
higher-derivative operators dressed with factors of exp (X+).

Most of these decay exponentially in the future.

In fact: in the far future, all corrections coming from integrating
out X2 decay away, except for three contributions:

◮ the effective tachyon,

◮ the dilaton,

◮ the string-frame metric.
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The effective tachyon can be fine-tuned away in the future.

The remaining contributions are always nonzero, coming from the
following diagrams:

∆(∂+Φ) =�
∆G++ =�

Write the renormalized dilaton gradient and string-frame metric as:

V̂µ ≡ Vµ + ∆Vµ

Ĝµν ≡ Gµν + ∆Gµν
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We obtain:

V̂− = V− = − q√
2

V̂+ = − q√
2

+
β

12

Ĝ+− = Ĝ−+ = −1 Ĝ−− = −α
′β2

24
Ĝ++ = 0

q and β take values such that q2 = (D − 26)/6α′ and qβ = 2
√

2
α′ .

In the X+ → ∞ limit, we therefore get

cdilaton = 6α′ĜµνV̂µV̂ν = −(D − 26) + 1

The result is that the shift in cenral charge contribution from the
dilaton precisely cancels the central charge shift due to the
reduction in spacetime dimension.
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This mechanism of central charge transfer works equally well when
the tachyon has a quadratic minimum in several transverse
directions:

T (X ) =
µ2

2α′ exp
(

βX+
)

n+1
∑

i=2

: X 2
i : +T0(X

+)

T0(X
+) =

nµ2 X+

α′ q
√

2
exp

(

βX+
)

+ µ′2 exp
(

βX+
)

In this case the renormalization of the metric and dilaton leads to
a central charge contribution in the X+ → ∞ limit given by:

c
dilaton = 6α′

Ĝ
µν

V̂µV̂ν = −6α′
q

2 +
nqβα′

√
2

− nα′2q2β2

8
= −(D − 26) + n
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Let’s now consider the type 0 string theory in D greater than 10.
The magnitude of the dilaton gradient is now

V0 = −q, q =

√

D − 10

4α′

and the linearized of motion for the tachyon is

∂µ∂µT − 2V µ∂µT +
2

α′ T = 0

One simple set of solutions is:

T = µ exp
(

βX+
)

, βq =

√
2

α′

We will not consider these solutions yet – they are qualitatively
different from our previous examples!
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Dimension-changing solutions in the type 0 string
Instead we will allow dependence on two transverse directions X2

and X3:

T = µ exp
(

βX+
)

X2X3, βq =

√
2

α′

Note that this perturbation is strictly primary of weight (1,1) –
without the addition of correction terms.

The tachyon couples to the worldsheet as a (1, 1) superpotential:

Lint =
i

2π

∫

dθ+dθ− T (X )

This gives rise to a potential and Yukawa term:

Lint = − α′

8π
GMN ∂MT ∂NT +

iα′

4π
∂M∂NT ψ̃MψN
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Dimension-changing solutions in the type 0 string

For our particular choice of profile, this gives an X+-dependent
mass term M ≡ µ exp (βX+) to the bosons and fermions in the
X2 and X3 multiplets:

Lint = −α
′ µ2

8π
exp

(

2βX+
)

(

X 2
2 + X 2

3

)

+
iα′ µ

4π
exp

(

βX+
)

(

ψ̃2ψ3 + ψ̃3ψ2

)

The spacetime dimension decreases by 2 in the limit of large X+!
The string theory in D-2 dimensions inherits the diagonal GSO
projection of the D-dimensional parent theory – that is, the
final-state string theory is still type 0.
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Flat space

Bubble interior

States w/ X     multiplets excited2,3

States w/ no X     multiplets excited2,3

The domain wall is a boundary between type 0 in D dimensions
and type 0 in D-2 dimensions.
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Quantum corrections in the worldsheet theory truncate again at
one-loop order.

All effective operators generated by integrating out the X2,3

multiplets decay exponentially as a function of X+, except for the
couplings to the dilaton Φ and string-frame metric GMN .
The renormalizations are:

∆Φ = +
βX+

2

∆G++ = −∆G−− = +
β2α′

2

which gives

∆cdilaton = +3
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Dimension-changing solutions in the type 0 string
More generally we can start with type 0 in an even number of
dimensions D = 10 + 2K , and consider a tachyon profile

T ≡ µ exp
(

βX+
)





n
∑

j=1

X9+jYj





with Yj ≡ X9+K+j .

Again, the increase dilaton central charge precisely compensates
the loss of matter central charge. Integrating out 2n dimensions in
this way renormalizes the dilaton central charge by

∆cdilaton = +3n

In the case n = K , the final state is critical, 10-dimensional type 0
string theory with lightlike linear dilaton rolling to weak coupling in
the future.
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Note that no effective tachyon vev is generated inside the bubble –
the vanishing of the tachyon at large X+ is natural.

There is a discrete chiral R-symmetry (−1)FLW which acts as:

Y : −
X : +

G̃ : −
G : +

which is unbroken by the tachyon profile in the D-dimensional
theory. Also an unbroken non-R symmetry reflecting Yn+1,··· ,K .

These symmetries forbid the generation of any term

∆L ∝
∫

dθ+dθ−f (X ,Yn+1,··· ,K )

in the D − 2n dimensional theory on the right of the domain wall.
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Instead of starting with type 0 on a smooth space, we can consider
starting on a ZZ2 orbifold of flat space.

In particular, let us orbifold by the symmetry (−1)FLW we just
defined for the type 0 initial state in D = 10 + 2K dimensions.
Apart from acting on G̃ , the generator (−1)FLW reflects all K of
the Y coordinates.

The orbifold singularity has real codimension K, with massless
spacetime fermions propagating on the 10 + K dimensional fixed
locus.

The boundary conditions at the orbifold force the tachyon T to
vanish at Y = 0:

T (X ,Y ) = −T (X ,−Y )
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Transitions from type 0 to type II string theory

Starting with type 0 in D = 10 + 2 K, we can consider a tachyon
profile which describes the behavior of a generic tachyon vev near
the orbifold fixed locus:

T ≡ µ exp
(

βX+
)





K
∑

j=1

X9+jYj





with Yj ≡ X9+K+j .

Since the tachyon is odd under reflection of the Y coordinates, the
worldsheet mass matrix can at most pair up K of the
(unorbifolded) X coordinates with the K (orbifolded) Y
coordinates.

The minimum dimension of the final state is therefore 10!
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Transitions from type 0 to type II string theory

We thus have the usual GSO projection of critical type II string
theory. The worldsheet theory X+ → ∞ is therefore identical to
the worldsheet theory of the type II superstring.

The background values of all fields are trivial, save for the dilaton,
which has a lightlike gradient, rolling to weak coupling in the
future.

A type II background with flat string-frame metric and lightlike
linear dilaton actually preserves sixteen Killing spinors.

Our final state is therefore a half-BPS vacuum of type II string
theory.

This exact solution establishes conclusively that the type 0 theory
in supercritical dimensions can relax by tachyon condensation to a
supersymmetric ground state in D=10!
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In all examples so far, the basic kind of string theory is unchanged
between the initial and final configurations.

We now turn to a related model of lightlike tachyon condensation
in type 0 string theory, where the tachyon depends only on X+,
and is independent of the D − 2 dimensions transverse to X±.

We start with the Lagrangian for a timelike linear dilaton theory on
a flat worldsheet, describing D free, massless fields and their
superpartners:

Lkin =
1

2π
GMN

[

2

α′
(∂+X

M)(∂−X
N) − iψ

M(∂−ψ
N) − iψ̃

M(∂+ψ̃
N)

]



Lightlike tachyon condensation in type 0

The dilaton gradient VM must satisfy 4α′V 2 = −(D − 10), so we
take

V+ = V− = − q√
2

Vi = 0, i = 2, · · · ,D − 1

q ≡
√

D − 10

4α′

assuming the dilaton rolls to weak coupling in the future.
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The dilaton gradient VM must satisfy 4α′V 2 = −(D − 10), so we
take

V+ = V− = − q√
2

Vi = 0, i = 2, · · · ,D − 1

q ≡
√

D − 10

4α′

assuming the dilaton rolls to weak coupling in the future.

We would like to consider solutions for which the type 0 tachyon
condenses, growing exponentially in the lightlike direction X+.

We again take

T ≡ µ̃ exp
(

βX+
)
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The linearized equation of motion

∂2T − 2V · ∂T +
2

α′ T = 0

fixes

βq =

√
2

α′

Remember that the tachyon couples to the worldsheet as a (1, 1)
superpotential, giving rise to a potential and Yukawa term:

Lint = − α′

8π
GMN ∂MT ∂NT +

iα′

4π
∂M∂NT ψ̃MψN
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Lightlike tachyon condensation in type 0
We also get a modified supersymmetry transformation for the
fermions:

{Q−, ψ
M} = −{Q+, ψ̃

M} = F
M

F
M ≡ −

√

α′

8
G

MN
∂NT

Since the gradient of the tachyon is null, the worldsheet potential

α′

16π
G

MN
∂MT ∂NT

is zero.

But there is a nonvanishing F -term and Yukawa coupling between
the lightlike fermions:

F
− = +

q
√
α′µ

2
exp

(

βX
+)

LYukawa =
i µ

4π
exp

(

βX
+
)

ψ̃
+
ψ

+

where µ ≡ β2α′ µ̃.
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The M → ∞ limit

We want to determine the X+ → ∞ limit of this theory.

There is no worldsheet potential, so no string states are expelled
from the interior of the bubble.

The Lagrangian for the light-cone multiplets Xµ, ψµ, ψ̃µ is:

LLC =
i

π
ψ̃+∂+ψ̃

− +
i

π
ψ+∂−ψ

− +
iM

2π
ψ̃+ψ+

− 1

πα′ (∂+X+)(∂−X−) − 1

πα′ (∂+X−)(∂−X+)

where M ≡ µ exp (βX+).



The M → ∞ limit

The stress tensor of the light-cone sector of the theory is

T
LC = T

Xµ

+ T
ψµ

T
Xµ

≡ − 1

α′
Gµν : ∂+X

µ
∂+X

ν : +Vµ∂
2
+X

µ

T
ψµ

= +
i

2
Gµν : ψµ∂+ψ

ν :

with supercurrent

G
LC(σ+) ≡

√

2

α′
ψµ(∂+X

µ) −
√

2α′Vµ∂+ψ
µ

= −
√

2

α′
ψ

+
∂+X

− −
√

2

α′
ψ

−
∂+X

+ +
√
α′ q ∂+ψ

+ +
√
α′ q ∂+ψ

−

Analogous equations apply for the left-moving stress tensor and
supercurrent, replacing ψ with ψ̃ and ∂+ with ∂−.
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The M → ∞ limit

As M → ∞, the massive interaction becomes large and the theory
is strongly coupled in the variables Xµ, ψµ, ψ̃µ.

We would like to define an effective field theory useful for
analyzing the large-M regime, described by free effective fields
whose interactions are proportional to negative rather than positive
powers of M.
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The M → ∞ limit

We will not integrate out degrees of freedom. Instead, we will
perform a canonical change of variables such that the new set of
variables has interaction terms inversely proportional to M.

Nothing is integrated out and no information is lost as M → ∞,
but the theory becomes free in this limit, when expressed in terms
of the new variables.
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First, consider an approximation in which the perturbation M is
treated as a fixed constant M0.

As M0 → ∞, the conformal invariance of the original ψ±, ψ̃±

theory is broken.

We would like to find a new set of variables in which the theory is
approximately conformal, with corrections that vanish in the
M0 → ∞ limit:

ψ+ = 2c ′5 − M−1
0 b̃5 ψ− = M0c̃5

ψ̃+ = −2c̃ ′5 + M−1
0 b5 ψ̃− = −M0c5
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This change of variables is canonical, but not manifestly Lorentz
invariant.

The Lagrangian becomes

Lfermi = − i

π
b̃5∂+c̃5 −

i

π
b5∂−c5 −

i

2πM0
b5b̃5

− 1

πα′
(∂+X

+)(∂−X
−) − 1

πα′
(∂+X

−)(∂−X
+)

Enforcing the equations of motion, the change of variables is

ψ+ = 2∂+c5, ψ− = M0c̃5,

ψ̃+ = 2∂−c̃5, ψ̃− = −M0c5

The transformation is therefore Lorentz invariant if we assign to b5

a Lorentz weight of 3/2, and to c5 a weight of −1/2.
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The M → ∞ limit

So the M0 → ∞ limit of the original theory has a renormalization
group flow to a ghost system with spins (3/2,−1/2).

The RG flow induced by the massive perturbation M0ψ
+ψ̃+

decreases the central charge by 12 units.

The central charge of the original ψ± system is 1, but the central
charge of a bc ghost system with weights (3/2,−1/2) is −11.
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as µ exp (βX+), where X+ is a dynamical field.

We define a new set of variables b4, c4, b̃4, c̃4:

ψ
+ = 2c ′

4 − M
−1

b̃4 + 2β(∂+X
+)c4

ψ
− = Mc̃4

ψ̃
+ = −2c̃ ′

4 + M
−1

b4 + 2β(∂−X
+)c̃4

ψ̃
− = −Mc4

Perform a corresponding redefinition of the bosons X±:

X
+ ≡ Y

+

X
− ≡ Y

− + iβα
′
µ exp

(

βX
+)

c4c̃4



Promoting M to a dynamical object

This yields the following Lagrangian

L = − i

π
b̃4∂+c̃4 − i

π
b4∂−c4 − i

2πM
b4b̃4

− 1

πα′
(∂+Y

+)(∂−Y
−) − 1

πα′
(∂+Y

−)(∂−Y
+)



Promoting M to a dynamical object

This yields the following Lagrangian

L = − i

π
b̃4∂+c̃4 − i

π
b4∂−c4 − i

2πM
b4b̃4

− 1

πα′
(∂+Y

+)(∂−Y
−) − 1

πα′
(∂+Y

−)(∂−Y
+)

The stress tensor becomes:
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µ
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2
Y
µ − 3i

2
∂+c4 b4 −

i

2
c4 ∂+b4



Promoting M to a dynamical object

This yields the following Lagrangian

L = − i

π
b̃4∂+c̃4 − i

π
b4∂−c4 − i

2πM
b4b̃4

− 1

πα′
(∂+Y

+)(∂−Y
−) − 1

πα′
(∂+Y

−)(∂−Y
+)

The stress tensor becomes:

T
Y µ

+ T
ψµ

= − 1

α′
Gµν∂+Y

µ
∂+Y

ν + Vµ∂
2
Y
µ − 3i

2
∂+c4 b4 −

i

2
c4 ∂+b4

As M grows, the stress tensor becomes free in canonical variables,
with all interaction terms going to zero as M−1.
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We refer to the variables Y µ, b4, c4, b̃4, c̃4 as the IR variables,
and the Xµ, ψµ, ψ̃µ as the UV variables.

The IR fields are legitimate, weakly interacting variables, suitable
for describing the X+ → +∞ limit of the theory.

There is an exact duality between the UV description and the IR
description.

In the case at hand, loop corrections are trivial on both sides, and
the duality inverts the expansion parameter for conformal

perturbation theory rather than for the loop expansion.
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Promoting M to a dynamical object

However, the central charge of the fermion theory has dropped
from its original value of 1 in the ψ± description, to a central
charge of −11 for a bc ghost system with weights (3/2,−1/2).

In fact, this is a quantum effect.

This is a subtle point, since the theory has no nontrivial dynamical
Feynman diagrams that might generate quantum corrections.

Question: How does this work?
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UV variables agrees only up to finite terms with the natural
orderings for composite operators in the IR variables.



Renormalization of the dilaton gradient

It turns out that the natural normal-ordering prescription for the
UV variables agrees only up to finite terms with the natural
orderings for composite operators in the IR variables.

The effect of these finite differences will be to renormalize the
dilaton gradient of the system by an amount ∆V+ = β, ∆V− = 0.
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Using the properties of Feynman diagrams and the equations of
motion, we can derive modified OPEs for the UV fields.



Normal ordering in the UV variables

Using the properties of Feynman diagrams and the equations of
motion, we can derive modified OPEs for the UV fields.

The natural basis for operators in the UV description is a basis of
normal-ordered products

: Xµ1(ρ1) · · ·Xµm(ρm)ψν1(σ1) · · ·ψνn(σn)ψ̃
π1(τ1) · · · ψ̃πp (τp) :

◮ The normal-ordered operator is nonsingular when any of the
arguments in the normal ordering symbol approach one
another;

◮ The normal-ordered operators obey the equations of motion.
For instance:

∂τ+∂τ− : X
−(σ)X−(τ ) : = − iβα′µ

4
: X

−(σ) exp

(

βX
+(τ )

)

ψ̃
+(τ )ψ+(τ ) :

◮ The normal ordered product of two “+” operators is equal to
the ordinary product;



Normal ordering in the UV variables

◮ The normal ordered product of a “+” field and a “−” field is
defined with the subtraction prescription of the free theory;

◮ The normal ordered product of two “−” fields has only “+”
fields on the right-hand side, and scales as a single power of
M;

◮ In the limit M → 0, the structure of the algebra of the
operators becomes that of the free theory (this property is
implied by the three previous properties).

Given these properties, we can derive the full structure of the OPE
for UV fields.
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Normal ordering in the IR variables

The normal-ordering prescription defined for UV fields is not useful
for the IR description.

The UV normal ordering : : subtracts terms from the time-ordered
product that are proportional to M, which is very large in the IR.

Define a second normal ordering prescription, appropriate to the IR
limit of the theory. In this case we take our basis of operators to be

◦
◦
Y µ1 (ρ1) · · ·Y µm (ρm) b4(σ1) · · · b4(σn)b̃4(τ1) · · · b̃4(τp)c4(ζ1) · · · c4(ζq)c̃4(ω1) · · · c̃4(ωr )

◦
◦

,

◮ The normal-ordered operator is nonsingular when any of the
arguments of operators in the normal ordering symbol
approach one another;

◮ The normal-ordered operators obey the equations of motion.
For instance:

∂τ+∂τ−
◦
◦ Y

−(σ)Y −(τ )
◦
◦ = − iβα′

4µ

◦
◦ Y

−(σ) exp

(

−βY
+(τ )

)

b4(τ )b̃4(τ )
◦
◦ ;



Normal ordering in the IR variables

◮ The normal ordered product of two operators from the set
b4, b̃4,Y

+ is equal to the ordinary product;

◮ The normal ordered product of a field from the set c4, c̃4,Y
−

with a field from the set b4, b̃4,Y
+ is defined with the

subtraction prescription of the free theory;

◮ The normal ordered product of two fields from the set
c4, c̃4,Y

− has only fields from the set b4, b̃4,Y
+ on the

right-hand side, and scales as a single power of M−1;

◮ In the limit M → ∞, the structure of the algebra of the
operators becomes that of the free theory of the IR fields.
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Normal ordering in the IR variables

The bosonic stress tensor turns out to transform unproblematically,
but the fermionic stress tensor picks up a quantum correction due
to the mismatch between : : and ◦

◦
◦
◦ normal ordering

prescriptions.

The corrections amounts to a renormalization of the dilaton
gradient:

V̂µ ≡ Vµ + ∆Vµ

∆V+ = +β ∆V− = 0

We are left with a contribution to the central charge equal to

cdilaton = 6α′ηµν V̂µV̂ν = −6α′q2 + 6
√

2α′βq

= 27 − 3D

2
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We have the remaining central charge contributions

◮ +2 from the Y µ

◮ −11 from the b4c4 system

◮
3
2(D − 2) from the transverse degrees of freedom X i , ψi

◮ total free-field contribution of 3D
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Quantum corrections
We have the remaining central charge contributions

◮ +2 from the Y µ

◮ −11 from the b4c4 system

◮
3
2(D − 2) from the transverse degrees of freedom X i , ψi

◮ total free-field contribution of 3D
2 − 12

The total central charge in the theory is therefore equal to 15.

As one moves in the target space from the original theory to
X+ = +∞, twelve units of central charge are transferred from the
light cone fermions ψ± to the dilaton gradient.

The central charge being transferred to the dilaton gradient does
not occur through a loop diagram of massive fields being
integrated out.

Instead, the central charge is transferred through a mismatch of
normal-ordering prescriptions appropriate to the free field theories
in the two limits X+ → ±∞.



Quantum corrections

Break up the supercurrent: GLC = 1 + 2 + 3 + 4, with

1 ≡ −
√

2

α′
ψ

+(∂+X
−) 2 ≡ −

√

2

α′
ψ

−(∂+X
+)

3 ≡
√
α′ q ∂+ψ

+
4 ≡

√
α′ q ∂+ψ

−
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Break up the supercurrent: GLC = 1 + 2 + 3 + 4, with

1 ≡ −
√

2

α′
ψ

+(∂+X
−) 2 ≡ −

√

2

α′
ψ

−(∂+X
+)

3 ≡
√
α′ q ∂+ψ

+
4 ≡

√
α′ q ∂+ψ

−

The full transformation of the supercurrent from UV to IR
variables is

1classical = −2

√

2

α′

◦
◦

[

(∂+c4)(∂+Y−) + βc4(∂+Y +)(∂+Y−) − iβα′

2
(∂+c4)b4c4

]

◦
◦

1quantum = −β

√

α′

2
∂2

+c4 − 2β2

√

α′

2
c4∂

2
+Y +

2 + 4 =
q

2

√
α′b4

3 = 2q
√

α′(∂2
+c4) + 2

√

2

α′
(∂+Y +)(∂+c4) + 2

√

2

α′
c4(∂

2
+Y +)



Quantum corrections

Expressed in b4, c4, Y variables, the supercurrent is manifestly
finite in the limit X+ → +∞ (as is the stress tensor).



Quantum corrections

Expressed in b4, c4, Y variables, the supercurrent is manifestly
finite in the limit X+ → +∞ (as is the stress tensor).

The b4, c4, Y fields can indeed be regarded as dual variables
that render the theory free in the M → ∞ limit.
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The IR limit

We now focus strictly on the limiting regime of the IR theory.

In practice, this means that, when written in IR variables, we
discard the exp (−βY +) b̃4b4 term in the action, as well as any
exp (−βY +) terms in the supercurrent and stress tensor.

Rescale the b4 field so that the new b fermion appears in the
supercurrent with unit normalization. To preserve all canonical
commutators, however, we will rescale the c4 field oppositely:

b4 =
2

q
√
α′

b3 = β
√

2α′ b3

c4 =
q
√
α′

2
c3 =

1

β
√

2α′
c3
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The IR limit
The invariance properties of the system under spatial reflection are
still unclear.

The stress tensor is invariant under the discrete symmetry
reflecting the spacelike vector orthogonal to V̂µ.

The supercurrent is not, however, since Vµ and ∆Vµ appear
independently in GLC.

We would like to find field variables that render this discrete
symmetry more manifest, such that only the vector V̂µ enters GLC.

We therefore define new variables b2, c2, Zµ by:

Y
± = Z

± ± i

2β
c2∂+c2

b3 = b2 − 2

βα′
(∂+c2)

(

∂+Z
+ − ∂+Z

−
)

− 1

βα′
c2

(

∂
2
+Z

+ − ∂
2
+Z

−
)

+
i

2β2α′
c2(∂+c2)(∂

2
+c2)

c3 = c2



The IR limit
The worldsheet supersymmetry is now realized nonlinearly.



The IR limit
The worldsheet supersymmetry is now realized nonlinearly.

The bosons Zµ transform into their own derivatives, times a
goldstone fermion:
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The IR limit
The worldsheet supersymmetry is now realized nonlinearly.

The bosons Zµ transform into their own derivatives, times a
goldstone fermion:

[Q,Zµ] = ic2∂+Zµ {Q, c2} = 1 + ic2∂+c2

where

Q ≡ 1

2π

∫

dσ1 G (σ)

In the sector involving the transverse fields Xi , ψ
i , supersymmetry

is realized in the usual linear fashion:

[Q,Xi ] = i

√

α′

2
ψi

{Q, ψi} =

√

2

α′ ∂+Xi



The IR limit
At first sight, our realization of supersymmetry in the full theory is
unfamiliar, with worldsheet supersymmetry realized linearly in one
sector and nonlinearly in another.



The IR limit
At first sight, our realization of supersymmetry in the full theory is
unfamiliar, with worldsheet supersymmetry realized linearly in one
sector and nonlinearly in another.

However, it turns out that this realization is equivalent to one for
which worldsheet supersymmetry is realized completely nonlinearly
in all sectors.



The IR limit
At first sight, our realization of supersymmetry in the full theory is
unfamiliar, with worldsheet supersymmetry realized linearly in one
sector and nonlinearly in another.

However, it turns out that this realization is equivalent to one for
which worldsheet supersymmetry is realized completely nonlinearly
in all sectors.

We now perform a final transformation on the system. Defining
the Hermitian infinitesimal generator

g ≡ − i

2π

∫

dσ1c2(σ)G⊥(σ)

we transform all operators in the theory according to

O → U OU−1

with
U ≡ exp (ig)



The IR limit
The total final supercurrent G ≡ GLC + G⊥ is then

G = b1 + ic ′1b1c1 − c1T
mat + c ′′1

(
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+ α′q2
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4
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+

i
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i
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And the total transformed stress tensor is

T = Tmat + T b1c1

with

T b1c1 = −3i
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i
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The total final supercurrent G ≡ GLC + G⊥ is then

G = b1 + ic ′1b1c1 − c1T
mat + c ′′1

(

−1

6
c⊥ − 1

2
+ α′q2

)

+c1c
′
1c

′′
1

(

− i

4
α′q2 − i

2
+

i

24
c⊥

)

And the total transformed stress tensor is

T = Tmat + T b1c1

with

T b1c1 = −3i

2
∂+c1b1 −

i

2
c1∂+b1 +

i

2
∂+(c1∂

2
+c1)

Plugging in q =
√

D−10
4α′ and c⊥ = 3

2(D − 2):

G = b1 + ic ′1b1c1 − c1T
mat − 5

2
c ′′1
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The IR limit

The X+ → ∞ limit of our solution is described by a free
worldsheet theory with a bc ghost system of weights (3/2,−1/2),

D free scalars ZM and D − 2 free fermions ψZ i
.

The total central charge of the ZM , ψZ i
system is 26, and the

contribution of −11 from the b1c1 system brings the total central
charge to 15.

The theory has critical central charge for a SCFT interpreted as
the worldsheet theory of a RNS superstring in conformal gauge.



Berkovits-Vafa construction

This type of superconformal field theory belongs to a class of
constructions introduced by Berkovits and Vafa, in which the
bosonic string is embedded in the solution space of the superstring.
[hep-th/9310170]



Berkovits-Vafa construction

This type of superconformal field theory belongs to a class of
constructions introduced by Berkovits and Vafa, in which the
bosonic string is embedded in the solution space of the superstring.
[hep-th/9310170]

For a conformal field theory Tmat with a central charge of 26, it is
possible to construct a corresponding superconformal field theory
defined by G , T with central charge 15.



Berkovits-Vafa construction

This type of superconformal field theory belongs to a class of
constructions introduced by Berkovits and Vafa, in which the
bosonic string is embedded in the solution space of the superstring.
[hep-th/9310170]

For a conformal field theory Tmat with a central charge of 26, it is
possible to construct a corresponding superconformal field theory
defined by G , T with central charge 15.

Upon treating the superconformal theory as a superstring theory,
the resulting physical states and scattering amplitudes are identical
to those of the theory defined by Tmat when treated as a bosonic
string theory.
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a ghost system b1c1 can be introduced with weights
(3/2,−1/2) and stress tensor T b1c1 .

◮ This gives rise to a fermionic primary current of weight 3/2:
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mat − 5
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Berkovits-Vafa construction

The construction can be summarized as follows:

◮ Given a conformal stress tensor Tmat with central charge 26,
a ghost system b1c1 can be introduced with weights
(3/2,−1/2) and stress tensor T b1c1 .

◮ This gives rise to a fermionic primary current of weight 3/2:

G ≡ b1 + ic ′1b1c1 − c1T
mat − 5

2
c ′′1

◮ This closes on the stress tensor of the theory:

G (σ)G (τ) ≃ 10i

(τ+ − σ+)3
+

2i

(τ+ − σ+)
T total(τ)

where

T total ≡ Tmat + T b1c1
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◮ To construct physical states of the corresponding superstring
theory, one starts with a Virasoro primary state |U〉 of weight
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Lmat
n |U〉 = 0 n ≥ 1

Lmat
0 |U〉 = 1



Berkovits-Vafa construction

◮ This defines a superconformal theory of central charge 15.

◮ To construct physical states of the corresponding superstring
theory, one starts with a Virasoro primary state |U〉 of weight
1 in the theory defined by Tmat:

Lmat
n |U〉 = 0 n ≥ 1

Lmat
0 |U〉 = 1

We have an exact solution describing a dynamical transition
between string theories that differ from one another in their
worldsheet gauge algebra.



Transition to bosonic string theory

This transition follows an instability in an initial D-dimensional
type 0 theory.



Transition to bosonic string theory

This transition follows an instability in an initial D-dimensional
type 0 theory.

The dynamics then spontaneously break worldsheet
supersymmetry, giving rise to a bosonic string theory in the same
number of dimensions deep inside the tachyonic phase.
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A partial catalog of exact transitions

start Dinit exp (−βX+)T end Dfin comments

bos D µ2 X 2
2 bos D-1 tuned

0 D µX2X3 0 D-2 natural

0 (orb) D µXi+1Yi II 10 stable

0 D µ bos D tuned
+1

2 (D-2)

UHE 10 µX2 HE9 9 stable

HO(+1) 11 µX2 HO 10 stable

HO(+1)/ 11 µX2 HO/ 10 natural

HO(+1)/ 11 µX2 HO 10 stable
(orb)

N 2 Dc µφ2φ3 N 2 Dc natural
= 2 - 1 = 2 - 5

N 2 Dc µ bos 3 Dc tuned
= 2 - 1 - 2



The Big Picture – Part I

Tuned, 

Natural transition

Tuned, µ < 0

µ > 0
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The Big Picture – Part II
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The Big Picture – Part III

4D Bosonic String

3D Bosonic String
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10D Bosonic String 

2D Bosonic String

12D Bosonic String

11D Bosonic String

Type 0A
12D

Type 0B
12D

Type 0
11D

Type 0A
10D

Type 0B

10D

Type 0A
4D

Type 0B
4D

Type 0
3D

Type 0A
2D

Type 0B
2D

2D Bosonic String
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Conclusions

◮ Supercritical string theory has some surprising and interesting
properties.

◮ We see that the supercritical string can be connected to the
duality web of critical string theory.

◮ We have found solutions that interpolate between superstring
theory and purely bosonic string theory.

◮ The surprising feature of these connections is the crucial role
of time dependence.

◮ There may be other interesting links between theories that we
have yet to discover.

◮ Thank you!
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