What can you do with Cosmic Microwave Background as a backlight?

> Lawrence Berkeley National Lab / Princeton University Shirley Ho

> > 11/10/08

Institute of Physics and Mathematics of the Universe

Time

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

z~0

z~6

z~1100

Time

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. z~6

z~0

z~1100

Outline

Motivations -- Why am I doing this?

Integrated Sachs Wolfe (ISW) Effect

- ➔ study the geometry of the Universe
- Weak Lensing (WL) of CMB (mini-version)
 - → study the matter between us and the last scattering surface
 - Cosmological constraints from ISW and WL of CMB
- Kinetic Sunyaev Zeldovich (kSZ) Effect
 - → find the Missing Baryons!

Time

Gravity + observing movement of local galaxies -> "Dark Matter" z~0

z~6

z~1100

QuickTime™ and a TIFF ((ZV)) decompressor are needed ofsee this picture.

Ω_{DE}

Ω_c

 Ω_b is the baryon density expressed in terms of critical density Ω_c is the cold dark matter density expressed in terms of critical density $\Omega_K = -K/H_0^2$ is the curvature expressed in terms of critical density Ω_{DE} is the dark energy density expressed in terms of critical density H_0 is the Hubble constant which dictates how fast the Universe is expanding σ_8 measures how strong the fluctuation of matter density is

 $l(l+1)C_l^{\delta T_{CMB}\delta T_{CMB}}(\mu K)^2$

$$\Omega_b = 0.0416$$
 $\Omega_c = 0.239$
 $\Omega_K = 0$
 $H_0 = 73.2$
 $\sigma_8 = 0.761$

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

> Angular Powerspectrum of Temperature Anisotropies in Cosmic Microwave Background

 $l(l+1)C_l^{\delta T_{CMB}\delta T_{CMB}}(\mu K)^2$

$$\Omega_b = 0.215$$
$$\Omega_c = 1.25$$
$$\Omega_K = -0.29$$
$$H_0 = 32$$
$$\sigma_8 = 0.61$$

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

> Angular Powerspectrum of Temperature Anisotropies in Cosmic Microwave Background

 $l(l+1)C_l^{\delta T_{CMB}\delta T_{CMB}}(\mu K)^2$

$$\Omega_b = 0.015$$
 $\Omega_c = 0.089$
 $\Omega_K = 0.003$
 $H_0 = 120$
 $\sigma_8 = 0.73$

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

> Angular Powerspectrum of Temperature Anisotropies in Cosmic Microwave Background

Outline

• Motivations -- Why am I doing this?

Integrated Sachs Wolfe (ISW) Effect

- ➔ study the geometry of the Universe
- Weak Lensing (WL) of CMB (mini-version)
 - \rightarrow study the matter between us and the last scattering surface
 - Cosmological constraints from ISW and WL of CMB
- Kinetic Sunyaev Zeldovich (kSZ) Effect
 - → find the Missing Baryons!

Physics of Integrated Sachs Wolfe Effect:

CMB photons

- Photons gain energy going down potential well, lose energy climbing out.
- As $\Phi \rightarrow 0$ and a blue-shift is observed in overdense ($\Phi < 0$) regions.
- Thus we see a positive correlation between CMB temperature and density.
- → Unique Probe into the change of gravitational potential of the Universe.

What can ISW do?

- Unique Probe to the change of gravitational potential of the Universe.
- Puts independent constraints on parameters of Universe such as curvature, dark energy equation of state.
- ISW is expected to be a strong discriminator of modified gravity models, which have very distinctive ISW predictions (Song et al. 2007).

What can ISW do?

Universes with vastly different curvature can have very similar CMB powerspectrum

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

> Angular Power spectrum of Temperature Anisotropies in Cosmic Microwave Background

Galaxy-ISW 2D correlation Smaller angular scale —

Large scale structure samples: 2MASS(2-Micron All Sky Survey) LRG(SDSS Luminous Red Galaxies) QSO(SDSS Quasars/Quasi-Stellar Objects) NVSS(NRAO VLA Sky Survey)

> QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Ho, Hirata, Padmanabhan, Seljak & Bahcall (2008)

 We cross correlate the CMB sky (from WMAP) with the large scale structure which traces the mass, thus potential wells of the Universe:

$$C_l^{gT}$$
 (Data)

• But in order to determine cosmological constraint, we need to be able to **predict** the correlation amplitude.

Х

• To do that, what do we need?

$$C_{l}^{g\delta T_{ISW}} = \frac{3\Omega_{m}H_{0}^{2}T_{CMB}}{c^{2}(l+\frac{1}{2})^{2}} \int \frac{b*\frac{dN}{dz}}{dz} \frac{H(z)}{c} D(z)\frac{d}{dz} [D(z)(1+z)]P(\frac{l+\frac{1}{2}}{\chi})dz$$

 $\sum_{i}^{gT_{ISW}}$ (Theory)

 $C^{gT_{ISW}}_{I}(\mu K)$ l(l+1)

Smaller angular scale ——

Black -> LRGs at z = 0.2 to 0.4 Red -> LRGs at z = 0.4 to 0.6

QuickTime [™] and a TIFF (LZW) decompressor are needed to see this picture.

Ho, Hirata, Padmanabhan, Seljak & Bahcall (2008)

 $\frac{C_l^{AB}}{C_l^{AA}} = \frac{(b*\frac{dN}{dz})}{(b*\frac{dN}{dz})}$

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

 We cross correlate the CMB sky (from WMAP) with the large scale structure which traces the mass, thus potential wells of the Universe:

 C_{i}^{gT} (Data)

- But in order to determine cosmological constraints, we need to be able to predict the correlation amplitude.

Х

• To do that, what do we need?

$$C_{l}^{g\delta T_{ISW}} = \frac{3\Omega_{m}H_{0}^{2}T_{CMB}}{c^{2}(l+\frac{1}{2})^{2}} \int \frac{b*\frac{dN}{dz}}{dz} \frac{H(z)}{c} D(z)\frac{d}{dz} [D(z)(1+z)]P(\frac{l+\frac{1}{2}}{\chi})dz$$

 $\mathcal{C}_{T}^{gT_{ISW}}$ (Theory)

 We cross correlate the CMB sky (from WMAP) with the large scale structure which traces the mass, thus potential wells of the Universe:

$$C_l^{gT}$$
 (Data)

 But in order to determine cosmological constraints, we need to be able to predict the correlation amplitude.

Х

• To do that, what do we need?

$$C_{l}^{g\delta T_{ISW}} = \frac{3\Omega_{m}H_{0}^{2}T_{CMB}}{c^{2}(l+\frac{1}{2})^{2}} \int b^{*}\frac{dN}{dz}\frac{H(z)}{c}D(z)\frac{d}{dz}[D(z)(1+z)]P(\frac{l+\frac{1}{2}}{\chi})dz$$

 $C_{I}^{gT_{ISW}}$ (Theory)

 We cross correlate the CMB sky (from WMAP) with the large scale structure which traces the mass, thus potential wells of the Universe:

 C_{i}^{gT} (Data)

- Í
- But in order to determine cosmological constraints, we need to be able to predict the correlation amplitude.

Х

• To do that, what do we need?

$$C_{l}^{g\delta T_{ISW}} = \frac{3\Omega_{m}H_{0}^{2}T_{CMB}}{c^{2}(l+\frac{1}{2})^{2}} \int \frac{b*\frac{dN}{dz}}{\frac{dL}{dz}} \frac{H(z)}{c} D(z)\frac{d}{dz} [D(z)(1+z)]P(\frac{l+\frac{1}{2}}{\chi})dz$$

 $C_{i}^{gT_{ISW}}$ (Theory)

a) Check for any dependence of galaxy density on stellar density,

b)Cross-correlate the stellar density map with CMB map.

Thermal SZ (Hot electrons in cluster Compton scatter CMB photons): Using Halo models (Komatsu & Seljak 2002) to find the upper limit of contribution from tSZ (and other systematics)

Summary for ISW systematics

- We select a specific multipole range such that these multipoles are not affected by i) non-linearities, ii) systematic effects.
- We discard the **first multipole bin**, and also discard any multipole bins that correspond to **scale smaller than k=0.05 Mpc/h**.
- We then check for the total effects of systematics on these chosen bins by checking the **upper limit** on the total number of sigmas of contaminations that can be introduced by the specific systematics:

Outline

• Motivations -- Why am I doing this?

Integrated Sachs Wolfe (ISW) Effect

- ➔ study the geometry of the Universe
- Weak Lensing (WL) of CMB (mini-version)
 - → study the matter between us and the last scattering surface
 - Cosmological constraints from ISW and WL of CMB
- Kinetic Sunyaev Zeldovich (kSZ) Effect
 - → find the Missing Baryons!

Weak Lensing of CMB (mini-version)

- Probes matter in between us and the last scattering surface!
- We find evidence for a positive cross-correlation at the 2.5 σ level
- The cross correlation amplitude is 1.06 +/- 0.42 times that expected for the WMAP cosmological parameters.
- Our analysis extends other recent analysis in that we carefully determine bias weighted redshift distribution of the sources, which is needed for a meaningful cosmological interpretation of the detected signal.
- We investigate contamination of the signal by Galactic emission, extragalactic radio and infrared sources, thermal and kinetic Sunyaev-Zel'dovich effects, and the Rees-Sciama effect, and find all of them to be negligible.

Hirata, Ho, Padmanabhan, Seljak & Bahcall (2008)

Outline

• Motivations -- Why am I doing this?

Integrated Sachs Wolfe (ISW) Effect

- ➔ study the geometry of the Universe
- Weak Lensing (WL) of CMB (mini-version)

→ study the matter between us and the last scattering surface

Cosmological constraints from ISW and WL of CMB

- Kinetic Sunyaev Zeldovich (kSZ) Effect
 - → find the Missing Baryons!

Cosmological parameters

- First likelihood analysis using both ISW and WL of CMB that allows all cosmological parameters to vary.
- Using Markov chain Monte Carlo to search through all the parameter space in these models:
 - a) LCDM
 - b) CDM + Ω_K (allowing curvature)
 - c) CDM + w (allowing dark energy equation of state)
- Further Constraints on modified gravity models.

$CDM + \Omega_K$

Testing the flatness of universe!

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Solid: CMB+ISW+WL Dotted: CMB only

Ho, Hirata, Padmanabhan, Seljak & Bahcall (2008)

 $CDM + \Omega_K$

Independent probe to Geometry and Vacuum Energy

$$WMAP + ISW + WL....\Omega_{K} = -0.006^{+0.017}_{-0.028} \dots \Omega_{\Lambda} = 0.744^{+0.059}_{-0.089}$$

398 SPERGEL

TABLE 12

JOINT DATA SET CONSTRAINTS ON GEOMETRY AND VACUUM ENERGY

Data Set	Ω_K	Ω_{Λ}
$WMAP + h = 0.72 \pm 0.08 \dots$	-0.014 ± 0.017	0.716 ± 0.055
WMAP + SDSS	$-0.0053\substack{+0.0068\\-0.0060}$	0.707 ± 0.041
WMAP + 2dFGRS	$-0.0093\substack{+0.0098\\-0.0092}$	$0.745\substack{+0.025\\-0.024}$
WMAP + SDSS LRG	-0.012 ± 0.010	0.728 ± 0.021
WMAP + SNLS	-0.011 ± 0.012	0.738 ± 0.030
WMAP + SNGold	-0.023 ± 0.014	0.700 ± 0.031

Spergel et al. 2007

Mini-conclusion

• ISW (Integrated Sachs Wolfe) effect:

(1) First effort that goes beyond reporting detections towards developing a reliable likelihood analysis that allows one to determine cosmological constraints from ISW observations.

(2) Independent and complementary probe into characteristics of the Universe

- → Probes the geometry of the Universe
- Weak Lensing of CMB:

(1) We find evidence for a positive cross-correlation at the 2.5 σ level.
(2) This is the first analysis to use WL for cosmological constraints.

- ➔ Probes the matter in the Universe
- Cosmological Constraints from first likelihood analysis of ISW and WL of CMB that allows all the cosmological parameters to vary.

$$WMAP + ISW + WL....\Omega_{K} = -0.006^{+0.017}_{-0.028} \dots \Omega_{\Lambda} = 0.744^{+0.059}_{-0.089}$$

Outline

• Motivations -- Why am I doing this?

Integrated Sachs Wolfe (ISW) Effect

- ➔ study the geometry of the Universe
- Weak Lensing (WL) of CMB (mini-version)
 - \rightarrow study the matter between us and the last scattering surface

Cosmological constraints from ISW and WL of CMB

Kinetic Sunyaev Zeldovich (kSZ) Effect

→ find the Missing Baryons!

Time

z~6

Cosmic Microwave Background

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Nucleosynthesis

We are trying to find the gas not only in the galaxies but also along these filaments or just in the intergalactic medium!

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

> Courtesy simulation of gas from Renyue Cen and Jerry Ostriker

Physics of KSZ:

-Kinetic Sunyaev Zeldovich:

1) electrons interact with photons!

Electrons moving towards us:
→ HOT spot
electrons moving away from us:
→ COLD spot

$$\frac{\delta T_{ksz}}{T_{cmb}} = -\int n_e \sigma_T (\frac{\vec{v}}{c} \cdot \hat{n}) dl$$

A New way to find missing baryons Step 0: Introduce the components

Momentum field of universe

A New way to find missing baryons Step 1: Locate the galaxies

Momentum field of universe

A New way to find missing baryons Step 2: reconstruct the velocities from density

Momentum field of universe

$$\vec{v}(k,a) = i \frac{d \ln D}{d \ln a} a H \delta(k) \frac{\vec{k}}{k^2}$$

A New way to find missing baryons

Momentum field of universe

Momentum field of universe

How does this work?

Momentum field of universe

How does this work?

Observed CMB

Momentum field of universe

Moving towards us Moving away from us

How does this work? kSZ !

$$\frac{\delta T_{ksz}}{T_{cmb}} = -\int n_e \sigma_T (\frac{\vec{v}}{c} \cdot \hat{n}) dl$$

Observed CMB

Momentum field of universe

Moving towards us Moving away from us

How does this work? kSZ !

$$\frac{\delta T_{ksz}}{T_{cmb}} = -\int n_e \sigma_T (\frac{\vec{v}}{c} \cdot \hat{n}) dl$$

Observed CMB

Momentum field of universe

Moving towards us Moving away from us

Momentum fields!

• SDSS DR4 main galaxies

Momentum fields!

SDSS DR4 Luminous Red Galaxies

CMB Observations

Atacama Cosmology Telescope

Planck Satellite

Missing Baryon ratio

Galaxy Momentum - kSZ temperature change cross-correlation

$$C_{l}^{P\theta} = \frac{\pi^{2}}{2l^{5}} \int b^{*} \frac{dN}{d\eta} g(\eta) (\frac{dD(\eta)}{d\eta} \frac{1}{D})^{2} I_{P\theta} (l/\eta) d\eta$$

A function of f_{gas}

$$C_{l}^{P\theta} = f_{gas} \left[\frac{\pi^{2}}{2l^{5}} \int b^{*} \frac{dN}{d\eta} g'(\eta) \left(\frac{dD(\eta)}{d\eta} \frac{1}{D} \right)^{2} I_{P\theta}(l/\eta) d\eta \right]$$

This will be available alongside with the momentum templates

Missing Baryon ratio

Missing Baryon ratio

KSZ estimated S/N

	ACT 260 deg ²	ACT 4000 deg ²	Planck
SDSS	1.068	4.19	11.27
DR4			
SDSS3	3.789	14.84	41.95
ADEPT	4.432	17.39	55.97

Ho, Dedeo & Spergel 2008, in prep

Conclusion

- More to learn about the Universe
- Lots to gain by cross correlating Cosmic Microwave Background with Large Scale Structures with current and upcoming experiments!
 - ➔ Geometry of the Universe
 - → Dark Energy, Dark Matter...
 - ➔ Missing Baryons

THANK YOU for listening!