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I would like to thank my colleagues and collaborators P.
Aspinwall, C. Beil, and D. Berenstein. This talk will discuss
some work in progress, as well as reviewing a number of
older papers, including:

• D. Berenstein, Reverse geometric engineering of
singularities, JHEP 04 (2002) 052, hep-th/0201093.

• P. S. Aspinwall, A point’s point of view of stringy
geometry, JHEP 01 (2003) 002, hep-th/0203111.

Also relevant are:

• M. Van den Bergh, Three-dimensional flops and
noncommutative rings, Duke Math. J. 122 (2004)
423–455, math.AG/0207170.

• V. Ginzburg, Calabi–Yau algebras, math.AG/0612139.
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For the past ten years, one of the most exciting branches of
string theory has been the study of a correspondence
between conformal field theories in 4 dimensions and certain
string compactifications.

A quantum field theory is
conformal if, roughly speaking, it behaves the same way at
all distance scales. Interesting examples of conformal
behavior are found in many places in science and
mathematics. For example, the theory of fractals exhibits
this kind of behavior: a fractal is self-similar over a broad
range of distance scales. Many other examples are available
from condensed matter physics, where phase transitions
between different states of matter are often characterized by
self-similar behavior.
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Open strings and D-branes

The string theory model for conformal field theories is
related to open strings in the so-called type IIB string
theory.

This is one of the five types of string theory in ten
dimensions, which was originally believed to involve closed
strings only. However, in the mid-1990’s it was recognized
that open strings also play a rôle in this theory, with the
endpoints of the open strings confined to a subspace known
as a D-brane. The case of relevance for today’s story is a
D-brane with 3 spatial dimensions (and 1 temporal
dimension)—a so-called D3-brane.
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Gauge theories

The open strings must carry gauge fields at their endpoints,
and these are provided by gauge fields on the D3-branes.

The gauge group in question is a unitary group U(N), and N
has an intrinsic definition as a “D-brane charge”. (For this
reason, one often pictures a D3-brane with gauge group
U(N) as being a “stack” of N D3-branes located in the same
position.) Considering the “D-brane charge” in more detail
gives the first hint about the AdS/CFT correspondence. Just
as the electric charge at a point can be determined by
integrating the electric field over a sphere surrounding the
point, the D-brane charge can be determined by integrating
an appropriate field over a sphere in the transverse space.
The D3-brane is a 4-dimensional spacetime embedded within
a 10-dimensional spacetime, so the transverse space is
6-dimensional. Thus, we integrate an appropriate field over a
5-dimensional sphere to determine the D-brane charge.
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The AdS/CFT correspondence is a duality between string
theory formulated on the product of a 5-sphere and a
5-dimesional anti-de Sitter spacetime (with N units of
D3-brane charge), and the conformal field theory with gauge
group U(N) and maximal supersymmetry.

In the “weak
form” of the correspondence, the duality is expected to hold
in the large N limit. In the strong form, the string theory
and the gauge theory should be equiavlent for any value of
N. In either form, one must take a limit which focusses on
an asymptotic neighborhood of the D3-brane and ignores
features far away. As a consequence, the correspondence
makes sense for arbitrary transverse 6-dimensional spaces; in
particular, for Calabi–Yau manifolds.
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Algebraic geometry

String theory gets its connection to algebraic geometry
through compactification from 10 to 4 spacetime dimensions.

The 6 dimensions used for compactification have restrictive
geometric properties, in order to preserve certain features of
the 10 dimensional theory (such as supersymmetry) in 4
dimensions. The Riemannian metrics satisfying those
restrictive properties are hard to describe explicitly, but
thanks to Yau’s solution to the Calabi conjecture, a large
class of these metrics can be described indirectly using
algebraic geometry. The study of these Calabi–Yau
manifolds and their properties has provided one of the major
themes in algebraic geometry over the past 20 years.
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String theory gets its connection to algebraic geometry
through compactification from 10 to 4 spacetime dimensions.
The 6 dimensions used for compactification have restrictive
geometric properties, in order to preserve certain features of
the 10 dimensional theory (such as supersymmetry) in 4
dimensions. The Riemannian metrics satisfying those
restrictive properties are hard to describe explicitly, but
thanks to Yau’s solution to the Calabi conjecture, a large
class of these metrics can be described indirectly using
algebraic geometry. The study of these Calabi–Yau
manifolds and their properties has provided one of the major
themes in algebraic geometry over the past 20 years.
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Non-spherical horizons

Early in the study of the AdS/CFT correspondence, it was
realized that the same “AdS/CFT” idea could be applied if
the branes were located at a singular point of spacetime, in
which the transverse space is a (real) cone over a “horizon
manifold ” H which need not be a sphere. In fact, it had
long been known that some spacetime singularities (such as
orbifolds) are just as well-behaved in string theory as are
nonsingular points, and the AdS/CFT idea gave a new
approach to understanding why that might be true. In this
approach, on the “AdS” side we need to be concerned with
the differential geometry of the horizon manifold H.

Today, I will discuss a different point of view on this
correspondence, in which a careful analysis of the “CFT”
side produces some novel (noncommutative) algebraic
structures which—at least in many examples—permit one to
recover the singular Calabi–Yau manifold used on the “AdS”
side (and hence the horizon H).
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manifold ” H which need not be a sphere. In fact, it had
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D-Branes and categories

The original AdS/CFT correspondence is not simply a
statement about N D3-branes for a fixed N, but is rather a
statement about all possible stacks of branes located at the
given point.

In the generalizations in which the point is singular, there is
a phenomenon of brane fractionation discovered by Douglas,
Diaconescu, and Gomis: an “ordinary” stack of branes at P
can break up into a collection of different types of branes (all
located at P).
To achieve a full understanding of these brane states, we
need to introduce a category of D-branes. The objects in
the category will be all possible (stacks of) D-branes located
at P, and the morphisms in the category describe the open
string states, where the open strings are stretched between
one kind of brane and another.
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statement about N D3-branes for a fixed N, but is rather a
statement about all possible stacks of branes located at the
given point.
In the generalizations in which the point is singular, there is
a phenomenon of brane fractionation discovered by Douglas,
Diaconescu, and Gomis: an “ordinary” stack of branes at P
can break up into a collection of different types of branes (all
located at P).
To achieve a full understanding of these brane states, we
need to introduce a category of D-branes. The objects in
the category will be all possible (stacks of) D-branes located
at P, and the morphisms in the category describe the open
string states, where the open strings are stretched between
one kind of brane and another.
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For stacks of branes located at a single point P, this
categorical description is rather elementary: we simply get
the category of finite-dimensional complex vector spaces. A
vector space of dimension N corresponds to a stack of N
D3-branes, and the strings from N branes to M branes are
described by linear transformations T : CN → CM .

(This
description oversimplies things a bit, since it ignores the
possibility that branes may move away from the given point.
Our refined categorical description later on will take this into
account.)
In the more general case with a singularity at P, for many
types of singularities we will be able to describe the
corresponding D-brane category as the category of (left)
A-modules for a particular algebra A associated to the point
P.
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For stacks of branes located at a single point P, this
categorical description is rather elementary: we simply get
the category of finite-dimensional complex vector spaces. A
vector space of dimension N corresponds to a stack of N
D3-branes, and the strings from N branes to M branes are
described by linear transformations T : CN → CM . (This
description oversimplies things a bit, since it ignores the
possibility that branes may move away from the given point.
Our refined categorical description later on will take this into
account.)
In the more general case with a singularity at P, for many
types of singularities we will be able to describe the
corresponding D-brane category as the category of (left)
A-modules for a particular algebra A associated to the point
P.
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There is an existing description of many of these D-brane
categories in terms of algebraic geometry.

If X denotes the
singular Calabi–Yau manifold, and π : Y → X is a crepant
resolution of X , then the category of coherent sheaves
Coh(Y ) captures many of the features of the D-brane
category. More precisely, one should consider the bounded
derived category Db(Coh(Y )), but that is too technical for
today’s talk!
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categories in terms of algebraic geometry. If X denotes the
singular Calabi–Yau manifold, and π : Y → X is a crepant
resolution of X , then the category of coherent sheaves
Coh(Y ) captures many of the features of the D-brane
category. More precisely, one should consider the bounded
derived category Db(Coh(Y )), but that is too technical for
today’s talk!
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Morita equivalence

One fundamental notion in the theory of noncommutative
rings and algebras is the notion of Morita equivalence. Two
rings A and B are said to be Morita equivalent if there is an
equivalence of categories between the category of left
A-modules and the category of left B-modules.

For example,
a ring R is Morita equivalent to the ring Mn(R) of n × n
matrices over R.
A key fact is that if A and B are Morita equivalent, then the
centers of the rings Z(A) and Z(B) are isomorphic. (This is
obvious in the case of R and Mn(R).)
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The McKay correspondence

An important example of the types of algebras we will
encounter is the “twisted group algebra”. Let G be a finite
subgroup of SU(2) so that G acts on the polynomial algebra
C[x , y ]. The twisted group algebra C[x , y ] ? G consists of
pairs (f (x), g) and a multiplication

(f (x), g) · (φ(x), γ) = (f (x) · φg (x), g ◦ γ),

where φg (x) is the function obtained from acting on φ(x) by
g . Kapranov and Vasserot interpreted the McKay
correspondence as a statement about the structure of this
algebra: we can write

C[x , y ] ? G =
⊕

ρ∈Irrep(G)

Mρ ⊗ ρ

and describe the algebra in terms of the modules Mρ. Its
structure is determined by the graph of representations
which McKay used:
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In the An case, for example, the graph forms a cycle and one
has relations xiyi = yi−1xi−1.

Its not too hard to determine the center of the algebra from
this description: it is generated by

X = x0 · · · xn−1 + cyclic permutations

Y = y0 · · · yn−1 + cyclic permutations

Z = xiyi + cyclic permutations

subject to the relation Zn = XY . Of course, the center can
also be identified with C[x , y ]G , so this was not unexpected.
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D-brane algebras

How do we associate an algebra to the category of D-branes
at a singular point P? In every known example, the
collection of possible D-branes at P can be described as a
collection of quantum field theory with the same Lagrangian
for each of the theories.

More precisely, one does not specify in advance which
unitary groups Gi = U(Ni ) take part in the theory, but one
does specify the matter representation (as a collection of
adjoint and bifundamental fields for the gauge groups Gi )
and one specifies a superpotential W which is the trace of a
polynomial in the matter fields.
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To such data, we can first assign a quiver, that is, a directed
graph whose vertices label the groups Gi and whose directed
edges specify the bifundamental and adjoint fields in the
matter representation.

From the quiver, we directly get the path algebra, which is
the algebra of all paths on the quiver (i.e., all ordered
monomials in matter fields). However, a universal feature of
this family of theories is the relations in the path algebra
determined by what are called “F-term constraints” in
physics: these are the algebra relations dictated by ∂W /∂Xj .
So, given a field theory description of the family of D-branes
in the form above, the D-brane algebra is

A = path algebra of quiver/(∂W /∂Xj).

This is sometimes called a superpotential algebra, or a
Calabi–Yau algebra.
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Example 1

As a first example, we consider the case in which P is a
smooth point. In physics language, the conformal field
theory is the N = 4 super-Yang–Mills theory, here written in
N = 1 language. The N = 4 gauge multiplet decomposes
as an N = 1 gauge multiplet plus three complex scalar fields
X , Y , Z , each transforming in the adjoint representation of
the group. The superpotential is

W = tr (X (YZ − ZY )) .

The F-term constraint in this case tells us YZ = YZ ,
XZ = ZX and XY = YX . Thus, we find

A = C[X ,Y ,Z ],

the (commutative) polynomial algebra in three variables. (So
we get the category of C[X ,Y ,Z ]-modules; if the branes are
fixed at P, this is just the category of C-vector spaces as
remarked earlier.)
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Example 2

To realize the McKay quiver Ân in this context, we need to
add loops at each of the vertices, represented by fields φi ;
then the superpotential

W = tr (φi (xiyi − yi−1xi−1))

gives the same relations as before. (This is known to be the
appropriate field theory description when P lies on a curve of
An−1 singularities.)

The algebra is the twisted group algebra,
tensored with the algebra of the φi ’s, which have no
relations among them. The center is:

Z(A) = C[x , y ]G ⊗ C[Φ],

where Φ =
∑

φi .
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Algebraic AdS/CFT correspondence

The algebraic version of the AdS/CFT correspondence which
we would like to formulate relates a point P of a Calabi–Yau
space X on the AdS side to a field theoretic description of
the D-branes at P on the CFT side. To recover the standard
AdS picture, one needs to know about metrics near P and
take a scaling limit; instead, we will focus on the formal
completion of the power series ring, we carries the local
algebraic information about the Calabi–Yau space.

Our conjectured correspondence relates the D-brane algebra
A (such that the D-brane category is the category of left
A-modules) to the formal completion of the coordinate ring
of X at P by asserting that the center Z(A) and the
coordinate ring of X at P have isomorphic formal
completions.
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Remarks:

1. The algebra A is not uniquely determined by the
D-brane category (this is related to Seiberg duality and
has been studied extensively); however, Morita
equivalence guarantees that the center does not change.

2. As stated, this provides a way of passing from a
Lagrangian description of a family of field theories to
the algebro-geometric structure near the AdS dual. It is
also possible to go backwards (work of Aspinwall and
collaborators): given P ∈ X , one studies the (derived)
category of coherent sheaves on X supported at P, and
determines a so-called tilting module for the category.
That tilting module, and some further computations of
Ext groups of the sheaves, gives a Lagrangian
description for the family of D-branes (including a
superpotential).
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3. To the best of my knowledge, there is no known
algorithm for computing the center of A. There is also
no known algorithm for producing a tilting module for
the derived category of coherent sheaves supported at
X . And of course, there is no proof at present that the
formal completion of Z(A) is isomorphic to the formal
completion of the coordinate ring of X at P.

4. Van den Bergh has conjectured that a “canonical
singularity” P ∈ X in dimension 3 admits an algebra A
whose category of modules describe the coherent
sheaves supported at P if and only if there is a
resolution of singularities π : Y → X which is relatively
Calabi–Yau (that is, no zeros are introduced into the
holomorphic 3-form), and he has proven this conjecture
in a number of cases. However, neither his conjecture
nor his proof address the question of whether A can be
written as a superpotential algebra.
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5. Ginzburg has introduced a more general notion of
Calabi–Yau algebras, which suggests that these ideas
may be true more globally, but it is fair to say that the
study of such algebras is still in its infancy.
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Example 3 (Cachazo–Katz–Vafa;
Aspinwall–Katz)

Let us modify the theory for Â1 by adding another term to
the superpotential. That is, we have fields xi , yi , φi for
i = 0, 1 with superpotential

W = tr (φ0(x0y0 − y1x1) + φ1(x1y1 − y0x0) + P(φ0) + P(φ1))

where P is some fixed polynomial.
The F-term relations are:

y0φ0 = φ1y0

φ0y1 = y1φ1

φ0x0 = x0φ1

x1φ0 = φ1x1

x0y0 = y1x1 − P ′(φ0)

x1y1 = y0x0 − P ′(φ1)
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y0φ0 = φ1y0

φ0y1 = y1φ1

φ0x0 = x0φ1

x1φ0 = φ1x1

x0y0 = y1x1 − P ′(φ0)

x1y1 = y0x0 − P ′(φ1)

One can see that the following elements are central:

X = x0x1 + x1x0

Y = y1y0 + y0y1

Z = x0y0 + x1y1

Φ = φ0 + φ1

and satisfy the relation

Z 2 = XY + ZP ′(Φ).
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These singularities are closely related to flops: by an old
result of Reid, the blowdown of a flop with normal bundle
OP1 ⊕OP1(−2) always has an equation of the above form,
where P has a zero at Φ = 0 of order at least 3.
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Example 4: the conifold

The previous example also describes the conifold, if we take
P(Φ) = 1

2Φ2. The standard physics approach to this is to
“integrate out” φi , using the F-term equations to solve
φ0 = y1x1 − x0y0, φi = y0x0 − x1y1. The new superpotential
is

W = tr

(
(y1x1 − x0y0)(x0y0 − y1x1) +

(y0x0 − x1y1)(x1y1 − y0x0)+

1

2
(y1x1 − x0y0)

2 +
1

2
(y0x0 − x1y1)

2

)

This is the standard superpotential for the conifold, first
found by Klebanov and Witten.
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Example 5: the suspended pinch point

As one final example, we will compute the superpotential
algebra and its centered for the “suspended pinch point”
(first considered in hep-th/9810201). The method which
Plesser and I used to find the superpotential in this case was
toric geometry. The suspended pinch point singularity can
be described torically as the cone over the following lattice
polyhedron:

2v v0 1

1

w

ww 0
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Plesser and I calculated a field theory dual, which can be
expressed in terms of the quiver

v1
x

��
z

''v3φ 77

x̃

FF

ỹ

33 v2

z̃
gg

y
ss

and superpotential

W = tr
(
φ(Ỹ Y − X̃X ) + λ(ZZ̃XX̃ − Z̃Z Ỹ Y )

)
.
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The F-term constraints become:

Ỹ Y = X̃X

φX̃ = λZZ̃X

Xφ = λXZ̃X

φỸ = λỸ Z̃Z

Y φ = λZ̃ZY

λZ̃X Z̃ = λY Ỹ Z̃

λXX̃Z = λZY Ỹ

There are central elements A = φ + λZZ̃ + λZ̃Z ,
B = X̃X + XX̃ + Y Ỹ , C = Ỹ Z̃X + Z̃X Ỹ + XỸ Z̃ ,
D = X̃ZY + ZY X̃ + Y X̃Z .
The relation is:

AB2 = λCD.
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Noncommutative algebraic geometry

There have been many efforts in the past few decades to
extend the familiar notions of commutative algebraic
geometry to noncommutative settings.

This work has met
with considerable skepticism from the algebraic geometry
community. However, the corner of noncommutative
algebraic geometry which I described today seems to be very
close to central issues in (commutative) algebraic geometry.
One can hope that further exploration of these ideas will
lead to both progress in the physics, and also to a deeper
understanding of the noncommutative aspects of algebraic
geometry per se.
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