Science and Instrumentation of ASTRO-H Mission

Hiroyasu Tajima

Kavli Institute for Particle Astrophysics and Cosmology SLAC National Accelerator Laboratory

Outline

- Mission Overview
- Instruments
- ***SGD Science Drivers**
- Technology Development
- * Performance

IPMU Seminar, University of Tokyo December 15, 2008 Kashiwa, Japan

* Next Generation of Japanese X-ray Satellite Mission

Successor to Suzaku (Astro-E2)

Recovery of Calorimeter Science

Lost due to failure of calorimeter onboard Suzaku

Major Science Objectives

- New probes of super-massive black holes
 - General Relativity effects near BHs
 - Obscured AGNs
- Detailed Understanding of galaxy clusters
 - Better determination of cluster mass and other properties
 - * Structure formation history of Universe
 - * Properties of Dark Energy
- Cosmic-ray accelerators

* CXB (Cosmic X-ray Background)

- CXB > 2 keV is not accounted for by point sources
- Obscured AGN to rescue?

* "The Cluster technique has the statistical potential to exceed the BAO and SN techniques." (Dark Energy TF)

- Largest systematic errors: relationship between cluster mass and observable
 - Precise X-ray line shape
 - ***** Turbulence, velocity shear
 - Heat transport and dissipation
 - Thermal state of gas
 - Chemical abundance
 - Hard X-ray measurements
 - * Magnetic field viscosity
 - Compton up-scattering + synchrotron (radio)
 - Cosmic-ray pressure
 - Radiative energy

* AGN induced turbulence in cluster.

Non-Thermal Emission from Clusters

* A2256: Non-thermal emission claimed by Beppo-SAX

* Concerns on missing X-ray observatory from 2013

* Soft X-ray Spectrometer

- Soft X-ray telescope + X-ray micro-calorimeter
- Hard X-ray Imaging System
 - Hard X-ray telescope + hard X-ray imager
- * Soft X-ray Imaging System
 - Soft X-ray telescope + CCD
- * Soft Gamma-ray Detector
 - Narrow field-of-view Compton camera

Measure temperature rise due to absorption of X-ray Energy resolution ~ 6 eV

*12 x 12 or 16 x 16 array

Suzaku XRS

* Scientific drivers

- High-energy cut-off in SNR, BHB, AGN, Clusters
- Nuclear gamma-ray lines (nuclear synthesis in SNe)
- Soft gamma-ray polarization

* Requirements

- Spectral measurement down to 10⁻³ Crab sources @100ks
- Energy band: 10–600 keV
- 10 times better sensitivity than Suzaku/HXD @ 100 keV
- Energy resolution < 2 keV @ 40 keV

Spectral Measurements for ~100 AGNs (10⁻³ Crab) Detect >500 AGNs (0.2x10⁻³ Crab) with 100 ks observation

H. Tajima, IPMU Seminar, December 15, 2007

***** Origin is not well known for 30 years.

- Sgr A*: Totani 2007
- SN Ia: Knodlseder 2005
- LMXB (low-mass X-ray binary): Weidenspointner et al. 2008
- Low-mass dark matter
- Recent INTEGRAL measurement indicates spatial asymmetry
 - Correlation with distribution of LMXB

Weidenspointner et al. 2008

Competitive against OSSE and INTEGRAL

- Low BG due to narrow FOV (10° x 10°)
 - + Good sensitivity: 10⁻⁵ cts/s/cm²
- Imaging with Compton reconstruction within FOV
 - Could be useful to identify signal against flat BG
- Energy resolution: ~ 5 keV

+ probe condition of emission site

o sub_cygx1_pin.pha sub_cygx1_gso.pha

- * 2.5σ (stat) evidence by Suzaku/HXD (Makishima et al. 2008)
 - Difference between bright/faint period by XIS
 - Systematic error due to BG is canceled to <1%
- * Origin of 511 keV @ GC?
- Emission mechanism?

First detection of non-thermal Bremsstrahlung by SGD

- Characteristic Γ~1 spectrum determined by Coulomb loss
- New probe for cosmic-ray acceleration
 - + Energy budget in sub-GeV cosmic rays
 - Interstellar medium heating
- Prime candidate: Cassiopeia A
- Other sources
 - SNR, Molecular clouds
 +~0.1 mG
 - Broad Iron lines
 - **+** ~ 400 eV
 - Synergy with SXS

- Electron spectrum
- Magnetic field

Constraints on

- Equipartition: B = 0.3 mG
- + Synchrotron cooling: B = 0.5 mG
- sub-GeV electron/proton population

SGD 100 ks

* Non-thermal Bremsstrahlung from Magnetar

- e⁺e⁻ pairs created around Magnetar are accelerated along magnetic field
- e⁺e⁻ pairs emit non-thermal Brems when reaching the pole and Compton scatter at Magnetar surface
 XIS1
- e⁺ should emit 511 keV
 - Gravitational redshift!

Geometrical information on magnetic field & accretion disk

- Polarization is only probe
- * SGD is only instrument which is sensitive for <1/10 Crab
 - Pulsar emission model, cyclotron resonance
 - AGN jet
 - BHB reflection
- Constraints on
 Lorentz Invariance
 Violation

* SGD sensitivity can be parameterized as

- 1σ sensitivity = 4.0% / sqrt(t_{obs}*F_{Crab})
 - tobs: observation time in ks
 - ✦ F_{Crab}: flux in Crab in in 40–200 keV

Source	Observation time	Νγ	Polarization 1 σ sensitivity
Crab	5 ks	235,000	1.8%
Cygnus X-1 soft state	25 ks	272,000	1.6%
X0115+63	25 ks	219,000	2.4%
Mk501 flare	100 ks	152,000	2.1%

Science and Instrumentation of ASTRO-H Mission,

H. Tajima, IPMU Seminar, December 15, 2007

- More than 10 papers
 - Seyfert, radio quiet Quasar, High-z Quasar (Blazar)
 - X-ray pulsar, Magnetar
 - CXB
- Less than 10 papers.
 - TeV Blazar
 - ULX (Ultra Luminous X-ray source), LMXB, gamma-ray binary
 - Rotation-powered pulsar
 - SNR (Supernova Remnant)
 - GC (Galactic center), Galactic ridge
- * High impact.
 - 511 keV from GC, SNR, BHC, LMXB or AXP
 - Non-thermal Bremsstrahlung from Cas-A
 - Polarization in BHC, pulsar or TeV blazar

* Low-Z sensor (Si) is a good scatterer:

- Compton scattering dominant for Si at lower energies
 - + Diamond (C) is even better if low energy threshold possible
- Smaller Doppler broadening effect
- * High-Z sensor (CdTe/CZT/Ge) is a good absorber
 - Photon absorption is dominant to 300 keV

* Single sensor type

- Simpler structure, readout
- Hybrid type
 - Low-Z scatterer and high-Z absorber
 - Simple stacking or sounding absorber
 - + Photons tend to be scattered horizontally

Nuclear Compton Telescope GRIPS

Some of Advanced Compton telescope options

ASTRO-H/SGD

Compton Camera Baseline Design

- 32 layers of 0.6 mm thick Si Pad
- 8 layers of 0.75 mm thick bottom-CdTe
- 2 layers of 0.75 mm thick side-CdTe
- 2 layers/module to reduce # of mechanical elements

* Key Technologies with good progress

- Si sensor
 - Well developed and understood technology
 - Reliable manufacturer: Hamamatsu Photonics (HPK)
- High-Z semiconductor (CdTe/CZT) sensor
 - Long development history, well understood
- Front-end electronics
 - + Low noise: ~ 1 keV (FWHM)
 - * Good energy and angular resolution
 - * Background rejection
 - Low energy threshold
 - + Low power
 - Total # of channels: ~280k
 - Highly-integrated functionality
- Challenging technology
 - Compact assembly (but extremely complex)

Low noise and low power consumption

- Front-end MOSFET geometry optimized for small capacitance.
- VA32TA: 2 mW/channel, shaping time 2 μ s $(45+19 \times C)/\sqrt{\tau} [e^{-}]$ (RMS)
- VA32TALP: 0.2 mW/channel, shaping time 4μ s, 110 e @ 6 pF.
- VA64TA1: 0.2 mW/channel, shaping time $4\mu s (76 + 24 \times C)/\sqrt{\tau} [e^{-}]$ (RMS)
- VA32TA5: VA64TA1 + integrated ADC
 - + Common mode noise detection.

* Fast shaper for self-trigger. (75–600 ns)

VA64TA

 Internal DAC (4-bit trim DAC, bias).
 Radiation hard to 20 MRad (due to 0.35 μm process).
 SEU (single event upset) tolerant design. (>70 MeV/μm²) Science and Instrumentation of ASTRO-H Mission.

H. Tajima, IPMU Seminar, December 15, 2007

High integration of functions to reduce electric components.

- Integrated Wilkinson-type ADC
- Common mode noise detection

Integrated ADC with on-chip common mode noise detection Al-pixel/CdTe/Pt 1.4 mm pixel 0.75 mm thick @-20°C, -400V

H. Tajima, IPMU Seminar, December 15, 2007

* Larger pixel is preferred to reduce channel count

- Lower power
- Easier assembly due to smaller number of ASIC
- * Contributions to angular resolution (68% containment)

CdTe Energy Resolution

* Detailed design in progress.

- Electronics behind sensors.
- Side-CdTe closer to Si sensors.

* Fabrication of mechanical mockup.

Baseline design by MHI.

Compton Camera Mechanical Model

Experimental Test of Compton Camera

Experimental Test of Compton Camera

Experimental Test of Compton Camera

Scattering angle resolution @ 122 keV

Arbitrary unit

H. Tajima, IPMU Seminar, December 15, 2007

Mitani et al., IEEE TNS 2003

H. Tajima, IPMU Seminar, December 15, 2007

HXI/SGD Sensitivity

10²

101

Energy (keV)

103

* SGD sensitivity is competitive for diffuse sources.

- Compton mode is photon limited.
 - Better sensitivity by longer exposure or larger effective area.

10-5

 10^{-6}

HXI (DS\$D-1)

HXI (DSSD-all)

100

H. Tajima, IPMU Seminar, December 15, 2007

*** ASTRO-H Science**

- Super-massive black holes
- Galaxy clusters
 - Structure formation history, dark energy
- Cosmic-ray accelerators
- * SGD Technology Development
 - Good progress on Si/CdTe sensors and ASIC technologies
 - Some technologies still require further development
 - + Compact Assembly Technique with minimum material

ASTRO-H was approved as a JAXA official mission Currently in phase B

