Argyres-Seiberg duality and the Higgs branch

Yuji Tachikawa (IAS)

in collaboration with
Davide Gaiotto \& Andy Neitzke [arXiv:0810.4541]

IPMU, December, 2008

Introduction

- Montonen-Olive S-duality in $\boldsymbol{\mathcal { N }}=4$ theory
- Seiberg-duality in $\mathcal{N}=1$ theory

Introduction

- Montonen-Olive S-duality in $\mathcal{N}=4$ theory
- Seiberg-duality in $\mathcal{N}=1$ theory

Argyres-Seiberg, Nov 2007

 a totally new class of S-duality in $\boldsymbol{\mathcal { N }}=\mathbf{2}$ theory- Richer structure !
- [Argyres-Wittig] [Aharony-YT] [Shapere-YT]

Introduction

- Montonen-Olive S-duality in $\boldsymbol{\mathcal { N }}=\mathbf{4}$ theory
- Seiberg-duality in $\boldsymbol{\mathcal { N }}=\mathbf{1}$ theory

Argyres-Seiberg, Nov 2007

 a totally new class of S-duality in $\boldsymbol{\mathcal { N }}=\mathbf{2}$ theory- Richer structure !
- [Argyres-Wittig] [Aharony-YT] [Shapere-YT]
- Today: Higgs branch side of the story

Contents

1. Argyres-Seiberg duality

2. Higgs branch
3. Summary

Contents

1. Argyres-Seiberg duality

2. Higgs branch
3. Summary

Montonen-Olive S-duality

$\mathcal{N}=4 \operatorname{SU}(N)$

$$
\tau=\frac{\theta}{2 \pi}+\frac{4 \pi i}{g^{2}}
$$

$$
\tau \rightarrow \tau+1, \quad \tau \rightarrow-\frac{1}{\tau}
$$

- Exchanges monopoles W-bosons
- Comes from S-duality of Type IIB

S-duality in $\mathcal{N}=2$

SU(3) with $N_{f}=6$

$$
\tau=\frac{\theta}{\pi}+\frac{8 \pi i}{g^{2}}
$$

$$
\tau \rightarrow \boldsymbol{\tau}+2, \quad \tau \rightarrow-\frac{1}{\tau}
$$

- Exchanges monopoles and quarks
- Infinitely Strongly coupled at $\boldsymbol{\tau}=\mathbf{1}$

[Argyres-Seiberg]

$\mathrm{SU}(3)+6$ flavors

 at coupling τA
$\mathrm{SU}(2)+1$ flavor $+\operatorname{SCFT}\left[E_{6}\right]$
at coupling $\tau^{\prime}=1 /(1-\tau), \mathbf{S U}(2) \subset \boldsymbol{E}_{6}$ is gauged

$\operatorname{SCFT}\left[E_{6}\right]$

$\operatorname{SCFT}\left[E_{6}\right]$

[Minahan-Nemeschansky]

- a 3-brane probing F-theory singularity of type $\boldsymbol{E}_{\mathbf{6}}$.
- Gauge symmetry on 7-brane
\longrightarrow Flavor symmetry on 3-brane
- Motion transverse to 7-brane \rightarrow Vector multiplet moduli \boldsymbol{u},
- Motion parallel to 7-brane
\longrightarrow free hypermultiplet, discard
- Conformal when $u=0, \operatorname{dim}(u)=3$
- Family of Seiberg-Witten curve is the elliptic fibration of F-theory.

Argyres-Seiberg: Dimensions

$\mathrm{SU}(3)+6$ flavors
$\operatorname{dim}\left(\operatorname{tr} \phi^{2}\right)=2, \quad \quad \operatorname{dim}\left(\operatorname{tr} \phi^{3}\right)=3$
\uparrow
$\mathrm{SU}(2)+1$ flavor $+\operatorname{SCFT}\left[E_{6}\right]$
u of $\operatorname{SU}(2): \operatorname{dim}=2, \quad u$ of SCFT$\left[E_{6}\right]: \operatorname{dim}=3$

Argyres-Seiberg: Flavor symmetry

$\mathrm{SU}(3)+6$ flavors

- Flavor symmetry: $\mathbf{U}(\mathbf{6})=\mathbf{U}(\mathbf{1}) \times \mathbf{S U}(\mathbf{6})$
$\mathrm{SU}(2)+1$ flavor $+\operatorname{SCFT}\left[E_{6}\right]$
- SO(2) acts on 1 flavor = 2 half-hyper of $\mathbf{S U (2)}$ doublet
- $\mathbf{S U}(2) \subset \boldsymbol{E}_{6}$ is gauged
- $\mathbf{S U (2)} \times \mathbf{S U (6)} \subset \boldsymbol{E}_{\mathbf{6}}$ is a maximal regular subalgebra

Current Algebra Central Charge

Normalize s.t. a free hyper in the fund. of $\mathbf{S U (N)}$ contributes 2 to $\boldsymbol{k}_{\boldsymbol{G}}$

$$
J_{\mu}^{a}(x) J_{\nu}^{b}(0)=\frac{3}{4 \pi^{2}} k_{G} \delta^{a b} \frac{x^{2} g_{\mu \nu}-2 x_{\mu} x_{\nu}}{x^{8}}+\cdots
$$

A bifundamental hyper under $\mathbf{S U}(N) \times \mathbf{S U}(M)$

$$
\longrightarrow k_{\mathrm{SU}(N)}=2 M, \quad k_{\mathrm{SU}(M)}=2 N
$$

$S U(3)+6$ flavors

$$
k_{\mathrm{SU}(6)}=6
$$

k for SCFT $\left[E_{6}\right]$

$\mathrm{SU}(2) \subset E_{6}$ central charge:

$$
S U(2)+4 \text { flavors }
$$

$S U(2)+1$ flavor $+\operatorname{SCFT}[E 6]$

k for SCFT $\left[E_{6}\right]$

$\mathrm{SU}(2) \subset E_{6}$ central charge:

$$
S U(2)+4 \text { flavors }
$$

$$
S U(\mathbf{2})+1 \text { flavor }+\operatorname{SCFT}[E 6]
$$

k for $\operatorname{SCFT}\left[E_{6}\right]$

$k_{\mathrm{U}(1)}$

$\mathrm{SU}(3)+6$ flavors

- $k_{\mathrm{U}(1)}=3 \times 6=18$
\uparrow
$\mathrm{SU}(2)+1$ flavor $+\operatorname{SCFT}\left[E_{6}\right]$
- $k_{U(1)}=2 \times 1 \times q^{2} \rightarrow q=3$

Matching Seiberg-Witten curves

Argyres \& Seiberg studied the SW curve on the both sides, and found
Curve of $\mathbf{S U}(\mathbf{3})$ theory with generic masses $\sum_{i} m_{i} Q^{i} \tilde{Q}_{i}$ at $\boldsymbol{\tau} \rightarrow \mathbf{1}$
\supset Curve of $\operatorname{SCFT}\left[\boldsymbol{E}_{\mathbf{6}}\right]$ with masses to $\mathbf{S U (6)} \subset \boldsymbol{E}_{\mathbf{6}}$
I won't (can't) explain it today ...

Another example: E_{7}

$\operatorname{USp}(4)+\mathbf{1 2}$ half-hypers in 4

- $\operatorname{dim}\left(\operatorname{tr} \phi^{2}\right)=2, \quad \operatorname{dim}\left(\operatorname{tr} \phi^{4}\right)=4$
- $k_{\mathrm{SO}(12)}=8$
\downarrow

SU(2) w/ SCFT[$\left.E_{7}\right]$

- $\operatorname{dim}\left(\operatorname{tr} \phi^{2}\right)=2$ from SU(2), $\operatorname{dim}(u)=4$ from SCFT $\left[E_{7}\right]$
- $\operatorname{SU}(2) \times \mathbf{S O}(12) \subset E_{7}$
- $k_{\mathrm{SU}(2) \subset E_{7}}=8$

More examples

[Argyres-Wittig]

	\mathfrak{g} w/	r	$=\widetilde{\mathfrak{g}} \mathrm{w} /$	$\widetilde{\mathbf{r}} \quad \oplus \quad$ SCF	[$d: \mathfrak{h}$]
1.	$\mathrm{sp}(3)$	$14 \oplus 11 \cdot 6$	$=\operatorname{sp}(2)$		$\left[6: E_{8}\right]$
2.	su(6)	$\mathbf{2 0} \oplus \mathbf{1 5} \oplus \overline{\mathbf{1 5}} \oplus 5 \cdot \mathbf{6} \oplus 5 \cdot \overline{\mathbf{6}}$	$=\operatorname{su}(5)$	$\mathbf{5} \oplus \overline{\mathbf{5}} \oplus \mathbf{1 0} \oplus \overline{\mathbf{1 0}}$	$\left[6: E_{8}\right]$
3.	so(12)	$3 \cdot \mathbf{3 2} \oplus \mathbf{3 2}^{\prime} \oplus 4 \cdot \mathbf{1 2}$	$=\mathrm{so}(11)$	$3 \cdot 32$	$\left[6: E_{8}\right]$
4.	G_{2}	8. 7	$=\mathrm{su}(2)$	2	$[6: \operatorname{sp}(5)]$
5.	so(7)	$4 \cdot \mathbf{8} \oplus 6 \cdot \mathbf{7}$	$=\mathrm{sp}(2)$	$5 \cdot 4$	$[6: \operatorname{sp}(5)]$
6.	su(6)	$\mathbf{2 1} \oplus \overline{\mathbf{2 1}} \oplus \mathbf{2 0} \oplus \mathbf{6} \oplus \overline{\mathbf{6}}$	$=\operatorname{su}(5)$	$\mathbf{1 0} \oplus \overline{\mathbf{1 0}}$	[6: $\operatorname{sp}(5)$]
7.	$\mathrm{sp}(2)$	$12 \cdot 4$	$=\operatorname{su}(2)$		[4: E_{7}]
8.	su(4)	$2 \cdot \mathbf{6} \oplus 6 \cdot \mathbf{4} \oplus 6 \cdot \overline{\mathbf{4}}$	$=\mathrm{su}(3)$	$2 \cdot \mathbf{3} \oplus 2 \cdot \overline{\mathbf{3}}$	$\left[4: E_{7}\right]$
9.	so(7)	$6 \cdot \mathbf{8} \oplus 4 \cdot \mathbf{7}$	$=G_{2}$	$4 \cdot 7$	$\left[4: E_{7}\right]$
10.	so(8)	$6 \cdot \mathbf{8} \oplus 4 \cdot \mathbf{8}^{\prime} \oplus 2 \cdot \mathbf{8}^{\prime \prime}$	$=\mathrm{so}(7)$	$6 \cdot 8$	[4:E E_{7}]
11.	so(8)	$6 \cdot \mathbf{8} \oplus 6 \cdot \mathbf{8}^{\prime}$	$=G_{2}$		$\left[4: E_{7}\right] \oplus\left[4: E_{7}\right]$
12.	$\mathrm{sp}(2)$	$6 \cdot 5$	$=\mathrm{su}(2)$		$[4: \mathrm{sp}(3) \oplus \mathrm{su}(2)]$
13.	$\mathrm{sp}(2)$	$4 \cdot 4 \oplus 4 \cdot 5$	$=\operatorname{su}(2)$	$3 \cdot 2$	$[4: \mathrm{sp}(3) \oplus \mathrm{su}(2)]$
14.	su(4)	$\mathbf{1 0} \oplus \overline{\mathbf{1 0}} \oplus 2 \cdot \mathbf{4} \oplus 2 \cdot \overline{\mathbf{4}}$	$=\operatorname{su}(3)$	$\mathbf{3} \oplus \overline{\mathbf{3}}$	$[4: \operatorname{sp}(3) \oplus \operatorname{su}(2)]$
15.	su(3)	$6 \cdot \mathbf{3} \oplus 6 \cdot \overline{\mathbf{3}}$	$=\operatorname{su}(2)$	$2 \cdot 2$	[3: E_{6}]
16.	su(4)	$4 \cdot \mathbf{6} \oplus 4 \cdot \mathbf{4} \oplus 4 \cdot \overline{\mathbf{4}}$	$=\mathrm{sp}(2)$	$6 \cdot 4$	[3: E_{6}]
17.	$\mathrm{su}(3)$	$\mathbf{3} \oplus \overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{6}}$	$=\mathrm{su}(2)$	$n \cdot 2$	[$3: \mathfrak{h}$]

Table 2: Predicted dualities with one marginal operator.

Advertisement

Central charges:

$$
\left\langle T_{\mu}^{\mu}\right\rangle=a \cdot \text { Euler }+c \cdot \text { Weyl }^{2}
$$

calculable for SCFT $\left[\boldsymbol{E}_{6,7}\right]$ using

- SU(3) w/ 6 flavors $\leftrightarrow \mathbf{S U (2)}+1$ flavor $+\mathbf{S C F T}\left[\boldsymbol{E}_{6}\right]$
- USp(4) w/ 12 flavors $\leftrightarrow \mathbf{S U (2)}+\mathbf{S C F T}\left[\boldsymbol{E}_{7}\right]$

We performed holographic calculation for $\operatorname{SCFT}\left[\boldsymbol{E}_{\mathbf{6}, \mathbf{7}, 8}\right]$

G	E_{6}	E_{7}	E_{8}
k_{G}	6	8	12
$24 a$	41	59	95
$6 c$	13	19	31

It was done before publication of [Argyres-Wittig]
Perfectly agreed! Power of string theory.

Contents

1. Argyres-Seiberg duality

2. Higgs branch
3. Summary

Objective

- Argyres \& Seiberg studied the story on the Coulomb branch side.
- I wanted to know the Higgs branch side of the story.

Objective

- Argyres \& Seiberg studied the story on the Coulomb branch side.
- I wanted to know the Higgs branch side of the story.
- I have two friends who are experts on hyperkähler things !

$\mathcal{N}=1$ Seiberg duality

$\operatorname{SU}(N) \mathbf{w} / N_{f}$ flavors q^{i}, \tilde{q}_{j}

- $m_{j}^{i}=q_{a}^{i} \tilde{q}_{j}^{b}$
- $b^{i_{1} i_{2} \cdots i_{N_{f}}}=\epsilon^{a_{1} a_{2} \ldots a_{N}} q_{a_{1}}^{i_{1}} q_{a_{2}}^{i_{2}} \cdots q_{a_{N}}^{i_{N}}$
- $\tilde{b}_{i_{1} i_{2} \cdots i_{N_{f}}}=\epsilon_{a_{1} a_{2} \ldots a_{N}} \tilde{q}_{i_{1}}^{a_{1}} \tilde{q}_{i_{2}}^{a_{2}} \cdots \tilde{q}_{i_{N}}^{a_{N}}$
$\operatorname{SU}\left(N^{\prime}\right) \mathbf{w} / N_{f}$ flavors Q_{i}, \tilde{Q}^{i}
- w/ singlets $M_{j}^{i}, W=Q_{i} \tilde{Q}^{j} M_{j}^{i}$
- $N^{\prime}=N-N_{f}$
- $B_{j_{1} j_{2} \cdots j_{N^{\prime}}}=\epsilon_{a_{1} a_{2} \ldots a_{N^{\prime}}} Q_{j_{1}}^{a_{1}} Q_{j_{2}}^{a_{2}} \cdots Q_{j_{N^{\prime}}}^{a_{N^{\prime}}}$
- $\tilde{B}^{j_{1} j_{2} \cdots j_{N^{\prime}}}=\epsilon^{a_{1} a_{2} \ldots a_{N^{\prime}}} \tilde{Q}_{a_{1}}^{j_{1}} \tilde{Q}_{a_{2}}^{j_{2}} \cdots \tilde{Q}_{a_{N^{\prime}}}^{j_{N^{\prime}}}$

$\mathcal{N}=1$ Seiberg duality

Mapping of operators:

$$
\begin{aligned}
m_{j}^{i}=q^{i} \tilde{q}_{j} & \leftrightarrow M_{j}^{i} \\
b^{i_{1} i_{2} \cdots i_{N}} & \leftrightarrow \epsilon^{i_{1} i_{2} \cdots i_{N} j_{1} \cdots j_{N^{\prime}}} B_{j_{1} j_{2} \cdots j_{N_{f}-N_{c}}} \\
\tilde{b}_{i_{1} i_{2} \cdots i_{N_{f}}} & \leftrightarrow \epsilon_{i_{1} i_{2} \cdots i_{N_{f}} j_{1} \cdots j_{N^{\prime}}} \tilde{B}^{j_{1} j_{2} \cdots j_{N^{\prime}}}
\end{aligned}
$$

Mapping of constraints:

$$
\begin{array}{rlr}
m_{j}^{[i} b^{\left.i_{1} \cdots i_{N}\right]} & =0 & \left(\tilde{q}_{j}^{a} q_{[a}^{i} q_{a_{1}}^{i_{1}} \cdots q_{\left.a_{N}\right]}^{i_{N}}=0\right) \\
\longrightarrow M_{j}^{i_{1}} B_{i_{1} \cdots i_{N^{\prime}}} & =0 & \left(M_{j}^{i} Q_{i}^{a}=0\right)
\end{array}
$$

etc.

Computation of moduli space, $\mathcal{N}=1$

$$
\frac{\{F=0, D=0\}}{G}=\frac{\{F=0\}}{G_{\mathbb{C}}}
$$

Basically:

- List gauge-invariant chiral operators
- Impose F-term = 0
- Study the constraints

Computation of moduli space, $\mathcal{N}=2$

$$
\frac{\left\{F^{A}=0, D^{A}=0\right\}}{G}=\frac{\left\{F^{A}=0\right\}}{G_{\mathbb{C}}}
$$

- $W=Q \Phi \tilde{Q} \longrightarrow F^{A}=t_{a \bar{a}}^{A} Q^{a} \tilde{Q}^{\bar{a}}$
- $\boldsymbol{F}^{\boldsymbol{A}}=D^{\boldsymbol{A}}=\mathbf{0}$ imposes $\mathbf{3 d i m} G$ conditions
- $/ G$ removes another $\operatorname{dim} G$
- \longrightarrow loose $4 \operatorname{dim} G$ dimensions

Dimensions

SU(3) +6 flavors Q^{i}, \tilde{Q}_{i}

$$
4 \times 3 \times 6-4 \operatorname{dim} S U(3)=40
$$

\uparrow
$\mathrm{SU}(2)+1$ flavor $q, \tilde{q}+\operatorname{SCFT}\left[E_{6}\right]$

$$
4 \times 2+? ? ? ?-4 \operatorname{dim} \mathrm{SU}(2)
$$

Higgs branch of SCFT[E_{6}]

D3 brane absorbed into the 7-brane
\longrightarrow becomes an instanton of type $\boldsymbol{E}_{\mathbf{6}}$!
Center of mass along the 7 -brane decoupled.
dim (centered \boldsymbol{k}-instanton moduli)

$$
=4 h_{E_{6}} k-4
$$

$$
k=1, h_{E_{6}}=12 \longrightarrow \operatorname{dim}=44
$$

Dimensions

$\mathrm{SU}(3)+6$ flavors Q^{i}, \tilde{Q}_{i}

$$
4 \times 3 \times 6-4 \operatorname{dim} S U(3)=40
$$

\downarrow
$\mathrm{SU}(2)+1$ flavor $q, \tilde{q}+\mathrm{SCFT}\left[E_{6}\right]$

$$
4 \times 2+44-4 \operatorname{dim} \operatorname{SU}(2)=40
$$

Operators

$\mathrm{SU}(3)+6$ flavors Q^{i}, \tilde{Q}_{i}

- $M_{j}^{i}=Q_{a}^{i} \tilde{Q}_{j}^{a}$
- $B^{[i j k]}=\epsilon^{a b c} Q_{a}^{i} Q_{b}^{j} Q_{c}^{k}$
- $\tilde{B}_{[i j k]}=\epsilon_{a b c} \tilde{Q}_{i}^{a} \tilde{Q}_{j}^{b} \tilde{Q}_{k}^{c}$
- Lots of constraints.
\downarrow
$\mathrm{SU}(2)+1$ flavor $q, \tilde{q}+\operatorname{SCFT}\left[E_{6}\right]$
- ??? \longrightarrow Need to know more about the $\boldsymbol{E}_{\mathbf{6}}$ instanton moduli space.
- But how? We don't have ADHM for exceptional groups...

One-instanton moduli

- Any one-instanton of G is an embedding of the $\mathbf{S U}(2)$ BPST instanton via $\mathbf{S U}(2) \subset \boldsymbol{G}$
- Space equivalent to a subspace of $\boldsymbol{g}_{\mathbb{C}}$, minimal nilpotent orbit

$$
G_{\mathbb{C}} \cdot T^{\rho}, \quad \rho: \text { highest root }
$$

- Equations explicitly known. Just quadratic. [Joseph,Kostant]
- Let $\boldsymbol{V}(\boldsymbol{\alpha})$: irrep with highest weight $\boldsymbol{\alpha}$, and $\boldsymbol{g}_{\mathbb{C}}=\boldsymbol{V}(\rho)$.
- Decompose

$$
\operatorname{Sym}^{2} V(\rho)=V(2 \rho) \oplus \mathcal{I}
$$

then

$$
\left\{G_{\mathbb{C}} \cdot T^{\rho}\right\}=\left\{\mathbb{X} \in g_{\mathbb{C}}|\quad(\mathbb{X} \otimes \mathbb{X})|_{\mathcal{I}}=0\right\}
$$

One-instanton moduli of $\mathrm{SU}(2)$

- Equations explicitly known. Just quadratic. [Joseph,Kostant]
- Let $\boldsymbol{V}(\alpha)$: irrep with highest weight α, and $\boldsymbol{g}_{\mathbb{C}}=\boldsymbol{V}(\rho)$.
- Decompose

$$
\operatorname{Sym}^{2} V(\rho)=V(2 \rho) \oplus \mathcal{I}
$$

then

$$
\left\{G_{\mathbb{C}} \cdot T^{\rho}\right\}=\left\{\mathbb{X} \in g_{\mathbb{C}}|\quad(\mathbb{X} \otimes \mathbb{X})|_{\mathcal{I}}=0\right\}
$$

- Parametrize su(2) by $\boldsymbol{x}_{1,2,3}$
- $\mathrm{Sym}^{2} 3=5 \oplus 1$
- $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0:$ just $\mathbb{C}^{2} / \mathbb{Z}_{2}$.

One-instanton moduli of \boldsymbol{E}_{6}

$$
\mathbb{X} \in \operatorname{adj}\left(E_{6}\right),\left.\quad(\mathbb{X} \otimes \mathbb{X})\right|_{\mathcal{I}}=0
$$

- We couple $\mathbf{S U (2)}$ gauge field $\boldsymbol{\Phi}$ to \mathbb{X}.
- Convenient to decompose under $\mathbf{S U (2)} \times \mathbf{S U (6)} \subset \mathbb{X}$

$$
X_{j}^{i}, \quad Y_{\alpha}^{[i j k]}, \quad Z_{(\alpha \beta)}
$$

- Superpotential is $W=\Phi^{\alpha \boldsymbol{\beta}} Z_{\alpha \boldsymbol{\beta}}$.

Operators

$\mathrm{SU}(3)+6$ flavors Q^{i}, \tilde{Q}_{i}

- $M_{j}^{i}=Q_{a}^{i} \tilde{Q}_{j}^{a} \longrightarrow \operatorname{tr} M, \hat{M}_{j}^{i}$
- $B^{[i j k]}=\epsilon^{a b c} Q_{a}^{i} Q_{b}^{j} Q_{c^{\prime}}^{k} \quad \tilde{B}_{[i j k]}=\epsilon_{a b c} \tilde{Q}_{i}^{a} \tilde{Q}_{j}^{b} \tilde{Q}_{k}^{c}$
\downarrow
$\mathrm{SU}(2)+1$ flavor $v, \tilde{v}+\mathrm{SCFT}\left[E_{6}\right]$
- $X_{j}^{i}, \quad Y_{\alpha}^{[i j k]}, \quad Z_{(\alpha \beta)}$
- F-term=0 $\rightarrow Z_{(\alpha \beta)}+v_{(\alpha} \tilde{v}_{\beta)}=0$
- $\hat{M}_{j}^{i}=X_{j}^{i}$
- $M=\epsilon^{\alpha \beta} v_{\alpha} \tilde{v}_{\beta}$
- $B^{[i j k]}=\epsilon^{\alpha \beta} v_{\alpha} Y_{\beta}^{i j k}, \quad \tilde{B}^{[i j k]}=\epsilon^{\alpha \beta} \tilde{v}_{\alpha} Y_{\beta}^{i j k}$

$\mathrm{U}(1)$ charge

$$
\begin{array}{ll}
B^{[i j k]}=\epsilon^{a b c} Q_{a}^{i} Q_{b}^{j} Q_{c}^{k} & \tilde{B}_{[i j k]}=\epsilon_{a b c} \tilde{Q}_{i}^{a} \tilde{Q}_{j}^{b} \tilde{Q}_{k}^{c} \\
B^{[i j k]}=\epsilon^{\alpha \beta} v_{\alpha} Y_{\beta}^{i j k} & \tilde{B}^{[i j k]}=\epsilon^{\alpha \beta} \tilde{v}_{\alpha} Y_{\beta}^{i j k}
\end{array}
$$

$\mathbf{U}(\mathbf{1})$ charge of $Q: \mathbf{1} \longrightarrow \mathbf{U}(\mathbf{1})$ charge of $\boldsymbol{v}: 3$

$\mathrm{SU}(3)+6$ flavors

- $k_{\mathrm{U}(1)}=3 \times 6=18$
$\mathrm{SU}(2)+1$ flavor $+\operatorname{SCFT}\left[E_{6}\right]$
- $k_{\mathbf{U}(1)}=2 \times 1 \times(\text { charge of } v)^{2} \longrightarrow$ charge of $v=3$

Constraints

Constraints of min. nilpotent orbit $E_{6, \mathrm{C}} \cdot T^{\rho}$

$$
\left.(\mathbb{X} \otimes \mathbb{X})\right|_{\mathcal{I}}=0 \text { where } \operatorname{Sym}^{2} V(\rho)=V(2 \rho) \oplus \mathcal{I}
$$

- We decompose $\mathbb{X}=\left(X_{j}^{i}, Y_{\alpha}^{[i j k]}, Z_{(\alpha \beta)}\right)$
- Decompose \mathcal{I} under $\mathbf{S U (2)} \times \mathbf{S U (6)}$
- Coefficients laboriously fixed

Constraints

$$
\begin{aligned}
& 0=X^{i}{ }_{j} Z_{\alpha \beta}+\frac{1}{4} Y_{(\alpha}^{i k l} Y_{j k l \beta)}, \\
& 0=X^{l}{ }_{\{i} Y_{[j k]\} l \alpha}, \\
& 0=X^{\{i}{ }_{l} Y_{\alpha}^{[j k]\} l}, \\
& 0=Y_{\alpha}^{i j k} Z_{\beta \gamma} \epsilon^{\alpha \beta}+X^{[i}{ }_{l} Y_{\gamma}^{j k] l}, \\
& 0=\left.\left(Y_{\alpha}^{i j m} Y_{k l m \beta} \epsilon^{\alpha \beta}-4 X^{[i}{ }_{[k} X^{j j]}{ }_{l]}\right)\right|_{0,1,0,1,0}, \\
& 0=X_{k}^{i} X^{k}{ }_{j}-\frac{1}{6} \delta^{i}{ }_{j} X^{k}{ }_{l} X^{l}{ }_{k}, \\
& 0=Y_{\alpha}^{i j k} Y_{i j k \beta} \epsilon^{\alpha \beta}+24 Z_{\alpha \beta} Z_{\gamma \delta} \epsilon^{\alpha \gamma} \epsilon^{\beta \delta}, \\
& 0=X_{j}^{i} X^{j}{ }_{i}+3 Z_{\alpha \beta} Z_{\gamma \delta} \epsilon^{\alpha \gamma} \epsilon^{\beta \delta} .
\end{aligned}
$$

Constraints

F-term eq.

$$
Z_{(\alpha \beta)}+v_{(\alpha} \tilde{v}_{\beta)}=0 .
$$

Identifications

$$
\begin{gathered}
\hat{M}_{j}^{i}=X_{j}^{i} \quad \operatorname{tr} M=\epsilon^{\alpha \beta} v_{\alpha} \tilde{v}_{\beta} \\
B^{[i j k]}=\epsilon^{\alpha \beta} v_{\alpha} Y_{\beta}^{i j k}
\end{gathered}
$$

$$
\begin{aligned}
& 0=X_{k}^{i} X_{j}^{k}-\frac{1}{6} \delta_{j}^{i} X_{l}^{k} X_{k}^{l}, \\
& 0=X_{j}^{i} X_{i}^{j}+3 Z_{\alpha \beta} Z_{\gamma \delta} \epsilon^{\alpha \gamma} \epsilon^{\beta \delta}, \\
& 0=Y_{\alpha}^{i j k} Z_{\beta \gamma} \epsilon^{\alpha \beta}+X_{l}^{i i} Y_{\gamma}^{j k] l}
\end{aligned}
$$

$$
\begin{aligned}
\hat{M}_{j}^{i} \hat{M}_{k}^{j} & =\frac{1}{6} \delta_{j}^{i} M_{n}^{m} M_{m}^{n}, \\
\rightarrow \quad \hat{M}_{j}^{i} \hat{M}_{i}^{j} & =\frac{1}{6}(\operatorname{tr} M)^{2}, \\
\hat{M}_{j}^{[i} B^{k l] j} & =\frac{1}{6}(\operatorname{tr} M) B^{i k l},
\end{aligned}
$$

Constraints

$$
\begin{aligned}
& W=Q^{i} \Phi \tilde{Q}_{i} \longrightarrow Q_{a}^{i} \tilde{Q}_{i}^{b}-\frac{1}{3} \delta_{a}^{b} Q_{c}^{i} \tilde{Q}_{i}^{c}=0 \longrightarrow \\
& \\
& \quad M_{j}^{i} M_{k}^{j}=\frac{1}{3}(\operatorname{tr} M) M_{k}^{i}, \quad M_{j}^{[i} B^{k l] j}=\frac{1}{3}(\operatorname{tr} M) B^{i j k}, \quad \text { etc. }
\end{aligned}
$$

$$
\begin{aligned}
\hat{M}_{j}^{i} \hat{M}_{k}^{j} & =\frac{1}{6} \delta_{j}^{i} \hat{M}_{n}^{m} \hat{M}_{m}^{n} \\
\hat{M}_{j}^{i} \hat{M}_{i}^{j} & =\frac{1}{6}(\operatorname{tr} M)^{2}, \\
\hat{M}_{j}^{[i} B^{k l] j} & =\frac{1}{6}(\operatorname{tr} M) B^{i k l}, \ldots
\end{aligned}
$$

Contents

1. Argyres-Seiberg duality

2. Higgs branch
3. Summary

Summary

Done

- Argyres-Seiberg duality reviewed.
- Higgs branches compared for $\boldsymbol{E}_{\mathbf{6}} \longrightarrow$ Perfect agreement!

Summary

Done

- Argyres-Seiberg duality reviewed.
- Higgs branches compared for $\boldsymbol{E}_{\mathbf{6}} \longrightarrow$ Perfect agreement!

To do

- Other cases \boldsymbol{E}_{7} ?
- String theoretic realization of the duality

