Symplectic Geometry of
 Langlangian submanifold

Kenji FUKAYA

Symplectic Geometry?

Origin \longrightarrow Hamiltonian Dynamics

$$
\begin{array}{ll}
q_{1}, \cdots, q_{n} & \text { position } \\
p_{1}, \cdots, p_{n} & \text { momentum }
\end{array}
$$

$H\left(q_{1}, \cdots, q_{n} ; p_{1}, \cdots, p_{n} ; t\right) \quad$ Hamiltonian

$$
\left\{\begin{array}{l}
\frac{d q_{i}}{d t}=\frac{\partial H}{\partial p_{i}} \\
\frac{d p_{1}}{d t}=-\frac{\partial H}{\partial q_{i}}
\end{array}\right.
$$

Hamiltonian's equation

Hamilton's equation is invariant of the coordinate change

$$
\left\{\begin{array}{l}
Q_{i}=Q_{i}\left(q_{1}, \cdots, q_{n}, p_{1}, \cdots, p_{n}\right) \\
P_{i}=P_{i}\left(q_{1}, \cdots, q_{n}, p_{1}, \cdots, p_{n}\right)
\end{array}\right.
$$

$\sum d P_{i} \wedge d Q_{i}=\sum d p_{i} \wedge d q_{i}$
canonical transformaiton = symplectic diffeomorphism

Symplectic manifold $\quad X=\bigcup U_{i}$
$U_{i} \quad$ has local coordinate $\quad q_{1}, \cdots, q_{n}, p_{1}, \cdots, p_{n}$
coordinate change is symplectic diffeomorphism
$\omega=\sum d p_{i} \wedge d q_{i} \quad \stackrel{\text { is globally defined. symplectic form }}{ }$

$$
d \omega=0 \quad \omega \wedge \cdots \wedge \omega=\text { volume form }
$$

Two important sources of symplectic Geometry

(1) Hamiltonian dynamics
(2) Algebraic or Kahler geometry

(1) Hamiltonian dynamics

$$
X=T^{*} M \quad \text { cotangent bundle. }
$$

$$
q_{1}, \cdots, q_{n} \quad \text { local coordinate of } \quad M
$$

$$
p_{1}, \cdots, p_{n} \quad \text { coordinate of the }
$$

cotangent vector

$$
\omega=\sum d p_{i} \wedge d q_{i}
$$

symplectic form

(2) Algebraic or Kahler geometry

Solution set of polynomial equation
has a symplectic structure
(Fubini-Study form)

Example

$$
X=\left\{(x, y, z, w) \mid x^{5}+y^{5}+z^{5}+w^{5}=1\right\}
$$

(Take closure in projective space.)

Clasical mechanics \quad Hamiltonian mechanics

Quantum mechanics

Symplectic geometry

Global Symplectic Geometry?

It is not clear whether
Global Symplectic Geometry
is related to the origin of symplectic geometry, that is Physics.

On the other hand,
from Mathematical point of view
Local symplectic geometry is trivial.

Riemannian geometry

$R_{i j k l}$ curvature (how locally spacetime curves.)

The most important quantity of Riemannian geometry.

There is no curvature in symplectic geometry.
(Dauboux's theorem 19th century.)

There is nontrivial Global Symplectic Geometry.

This is highly nontrivial fact and was
established by using
"string theory"

Classical mechanics \square Hamiltonian mechanics

Quantum mechanics

Symplectic geometry \downarrow
Global symplectic geometry

I will discuss geometry of

Lagrangian submanifold

as an example of nontrivial
Global Symplectic geometry.

Lagrangian submanifold

Example $\quad f\left(q_{1}, \cdots, q_{n}\right)$ a function of q_{1}, \cdots, q_{n}.

$$
p_{i}=\frac{\partial f}{\partial q_{i}}, \quad i=1, \cdots, n
$$

defines an n dimensional submanifold, Lagrangian submanifold L.

$$
f(q)=\text { area }
$$

function

no longer a graph

Lagrangian submanifolds

Definition:

$L \subset X$ a submanifold of X.

L is a Lagrangian submanifold.

$$
\begin{gathered}
\omega=0 \quad \text { on } L . \\
\operatorname{dim} L=\frac{1}{2} \operatorname{dim} X
\end{gathered}
$$

Role of Lagrangian submanifold

Lagrangian submanifold of $T^{*} M$ is a generalization of a function on M

Symplectic diffeomorphism: $X \rightarrow X$ is a Lagrangian submanifold of $X \times X$
$\boldsymbol{R}^{n} \subset \boldsymbol{C}^{n}$ is a Lagrangian submanifold

Role of Lagrangian submanifold

Lagrangian submanifold of $T^{*} M$ is a generalization of a function on M
Symplectic diffeomorphism: $X \rightarrow X$ is a Lagrangian submanifold of $X \times X$
$\boldsymbol{R}^{n} \subset \boldsymbol{C}^{n}$ is a Lagrangian submanifold

Role of Lagrangian submanifold

Lagrangian submanifold of $T^{*} M$ is a generalization of a function on M

Symplectic diffeomorphism: $X \rightarrow X$ is a Lagrangian submanifold of $X \times X$
$\boldsymbol{R}^{n} \subset \boldsymbol{C}^{n}$ is a Lagrangian submanifold

Role of Lagrangian submanifold

Lagrangian submanifold of $T^{*} M$ is a generalization of a function on M
Symplectic diffeomorphism: $X \rightarrow X$ is a Lagrangian submanifold of
$\boldsymbol{R}^{n} \subset \boldsymbol{C}^{n}$ is a Lagrangian submanifold

Lagrangian submanifold is the correct boundary condition for open string.
D brane

Symplectic Geometry

- analogy from algebraic geometry
$=$ Hamiltonian dynamics
$+$
Lagrangain submanifold
$+$
epsilon

Lagrangian submanifold of 2 dimensional Euclidean space
$=$ Circle

Classify Lagrangian submanifolds of \boldsymbol{C}^{n} ?

The first interesting case $n=3$.

The case $n=2$.
Answer: 2 dimensional torus. (Easy (except the case of Klein bottle))

Theorem (Gromov, 1980’)
 3 sphere S^{3} is NOT a
 Lagrangian submanifold of \boldsymbol{C}^{3}.

We need "open string theory" to prove this.

(I)

If L is a Lagrangian submanifolds in $R^{2 n}=C^{n}$ then there exists a disc which bounds it.

$$
\varphi: \begin{aligned}
& \quad D^{2} \rightarrow C^{n} \quad \text { holomorphic. } \\
& \partial D^{2} \rightarrow L
\end{aligned}
$$

(II)

Such a disc can not exists if L is sphere S^{3} because

$$
L \text { is } S^{3} \rightleftharpoons \int_{D^{2}} \varphi^{*} \omega=0
$$

φ holomorphic. $\rightleftarrows \int_{D^{2}} \varphi^{*} \omega>0$

Classical mechanics \square Hamiltonian mechanics

Quantum mechanics

$$
\begin{gathered}
\downarrow \\
\text { QFT ? String ? }
\end{gathered}
$$

Symplectic geometry \downarrow
Global symplectic geometry

To go further we need to be more systematic.

Approximate Geometry by Algebra.

Poincare (begining of 20th century)

$X:$ space
$H(X):$ Homology group

Poincare (begining of 20th century)

$$
\begin{aligned}
& X: \text { space } \\
& H(X): \text { Algebraic topology } \\
& H(X o l o g y \text { group }
\end{aligned}
$$

Poincare (begining of 20th century)

$$
\begin{aligned}
& X: \text { space } \\
& H(X): \text { Homology group }
\end{aligned}
$$

Begining of 21th century

we are now working on non Linear story

Classify the Lagrangian submanifolds of \boldsymbol{C}^{3} ?

Thurston-Perelman

3 manifolds are one of the 8 types of spaces

Which among those 8 types is a Lagrangian submanifold of \boldsymbol{C}^{3} ?

Answer

3 manifold	Lagrangian submanifold?
S^{3}	No(Gromov)
R^{3}	Yes
H^{3}	No(Viterbo)
$R \times S^{2}$	Yes
$R \times H^{2}$	Yes
$S L(2, R)$	No (F)
Sol	No (F)
$N i l$	No (F)

3 manifold	Lagrangian submanifold?
$S^{3}:$ Curvature $=1$	No (Gromov)
$R^{3}:$ Curvature $=0$	Yes
$H^{3}:$ Curvature $=-1$	No (Viterbo)

$\mathbf{3}$ manifold	Lagrangian submanifold?	
$S L(2, R)$	No (F)	$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad a d-b c=1$
$\mathbf{S O l}$	No (F)	$\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$
$\mathbf{N i l}$	No (F)	$\left(\begin{array}{lll}1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1\end{array}\right)$

Method: Count the discs.

$=$ Open string

$\varphi: D^{2} \rightarrow \boldsymbol{C}^{3}$ holomorphic. $\partial D^{2} \rightarrow L$

Count the discs.

Obtain numbers. (Many numbers)

Those sysem of numbers has a structure.

Obtain algebraic system; (something like group)

- In theoretical Physics,

Higher (>4) dimensional spaces are (at last) begining to be studied.

- Space of dimension >4 will never directly observable from human.
- They will be seen to us only through some system of numbers which can be checked by experiments.
- The role of higher dimensional geometry in physics here seems to be to provide a way to understand some huge list of numbers.
- This is the same as what I said about algebraic topology.

Keep going and understand Lagrangian submanifold by open string theory.

Difficulty

Counting the discs is actually a difficult problem.
Counting the discs $=$ Counting the number of solution of Non Linear differential equations

First and essential step to show S^{3} is not a Lagrangian submanifold.
If L is a Lagrangian submanifold in $R^{2 n}=C^{n}$ then there exists a disc which bounds it.

Counting the discs is difficult.

Difficulty

Counting the discs is actually a difficult problem.
Counting the discs $=$ Counting the number of solutions of Non Linear differential equations

Physics helps

Mirror symmetry (discovered in 1990')
provides (potentially) a powerful tool to compute the number of discs.

Classical mechanics \square Hamiltonian mechanics

Quantum mechanics

Symplectic geometry \downarrow
Global symplectic geometry

(Homological) Mirror symmetry (Konsevitch 1994)

(Homological) Mirror symmetry

Difficult problem of counting discs
becomes

Attackable problem of complex geometry

(Homological) Mirror symmetry

Difficult problem of counting discs
becomes

Global, Non Linear

Attackable problem of complex geometry
Local, Linear

Difficult problem of counting discs

Global, Non Linear
Non perturbative

becomes

Attackable problem of complex geometry
Local, Linear
Perturbative

Theorem (Seidel-Smith-F, Nadler)

Compact Lagrangian submanifold L of $T^{*} M$ is the same as $M \subset T^{*} M$ as D-brane
if
L, M are simply conneted and L is spin.
L is the same as M as D-brane implies in particular

- Homolog group of L is homology group of M.
- $[L]=[M]$ in $H\left(T^{*} M\right)$.

Arnold conjectured stronger conclusion in 1960's.

(Homological) Mirror symmetry (Kontsevitch 1992)

In our case $X=T^{*} M$ is noncompact and situaltion is slightly different.

$T^{*} M$		$\hat{X}=T^{*} M \quad$ (or $\left.M\right)$
Symplectic manifold L	$E \rightarrow M$	
Lagrangian submanifold (A brane)		Flat vector bundle

- String theory of $T^{*} M$ is gauge theory on M. (Witten 1990')
- M is simply connected Flat bundle on M is trivial.
- By proving a (small) part of (homological) Mirror symmetry conjecture we get new insight on Lagrangian submanifolds.
- Then we enhance conjecture and make it more precise and richer.
- Solving some more parts we get another insight.
- Conjecture now is becoming richer and richer contain many interesting and attackable open problems.

I want to keep going and understand
Global symplectic geometry
by using the ideas from
String theory.

Hamiltonian
Dynamics
$H: T^{*} M \rightarrow R$

Quantum mechanics
$\sqrt{-1} \frac{\partial \psi}{\partial t}=H(q, \sqrt{-1} \partial / \partial q) \psi$

Global symplectic manifold X

In Hamiltonian formalism (symplectic geometry)
q_{1}, \cdots, q_{n} position and p_{1}, \cdots, p_{n} momentum
play the same role

$$
\left\{\begin{array}{l}
Q_{i}=p_{i} \\
P_{i}=-q_{i}
\end{array} \quad\right. \text { is a canonical transformation }
$$

This transformation is NOT allowed in
Lagrangian formalism

Symmetry between q and p

still exists in quantum mechanics.

$$
\begin{aligned}
& H(q, p) \Leftrightarrow H\left(q, \frac{\partial}{\partial q}\right) \\
& q \times
\end{aligned} \begin{aligned}
& \Longleftrightarrow \frac{\partial}{\partial q}
\end{aligned}
$$

Fourier transformation

But this symmetry (after

 quantization) does not survive in global geometry.$$
X=T^{*} M
$$

Coordinate change between q_{1}, \cdots, q_{n} are nonlinear.
Coordinate change between p_{1}, \cdots, p_{n} are linear.

Coordinate change does NOT mix up q_{1}, \cdots, q_{n}

$$
\text { and } p_{1}, \cdots, p_{n}
$$

In algebraic geometry, there is no way to say which coordinate is q and which coordinate is p.

There is no way to associate an operator to a function (Hamiltonian) on X.

Definition:

Lagrangian submanifold L of a symplectic manifold $X \quad L \subset X$

$$
\begin{aligned}
& \omega=0 \quad \text { on } L . \\
& \operatorname{dim} L=\frac{1}{2} \operatorname{dim} X
\end{aligned}
$$

On L.

$$
\begin{aligned}
& p_{i}=\frac{\partial f}{\partial q_{i}} \Longrightarrow d p_{i}=\sum_{j} \frac{\partial^{2} f}{\partial q_{i} \partial q_{j}} d q_{j} \\
& \omega=\sum d p_{i} \wedge d q_{i}=\sum_{i, j} \frac{\partial^{2} f}{\partial q_{i} \partial q_{j}} d q_{j} \wedge d q_{i}=0
\end{aligned}
$$

