Neutrino Physics and status of SNOLAB Art McDonald Queen's University, Kingston, Canada

IPMU, March 11, 2008

- Motivation for Underground Laboratories
- Overview of Neutrino Physics measurements
- Motivation for future solar neutrino, double beta decay measurements
- Status of SNOLAB and future experimental program

Apparently underground laboratories have a long history!

GAIUS PLINIUS secundus 1st Century A.D

NATURALIS HISTORIA Chapter on ASTRONOMY and COSMOLOGY

...... I believe that there are some crazy people who go inside mines to study the stars......

You will hear from three of us (crazy people): McDonald: Low Energy Neutrinos, Double Beta Decay - SNOLAB Suzuki: Atmospheric, accelerator neutrinos – Kamioka Gaitskill: Dark Matter detection

Neutrino Physics

Neutrino properties

- 1) Evidence for neutrino flavor change (oscillation):
- Atmospheric: Super-K
- Solar: SNO (Solar model independent test, supported by other measurements).
- Reactor: Kamland shows flavor change clearly, same parameters as solar.
- LSND?: MiniBoone does not see effects compatible with oscillation at LSND
- Neutrino parameter limits set by many experiments: Reactor, Accelerator

2) Neutrino Mass:

- Mass differences only defined from oscillations
- Mass Limit < 2.8 eV from tritium beta decay
- Double Beta Decay: Limits so far: Mass limit < ~ 0.4 eV if Majorana.
- Limits from Astrophysics: Large Scale structure < 1 eV.

3) Number of light neutrinos:

- Z width: 2.981 +- 0.008 active types
- Big Bang Nucleosynthesis: ~ 3 active neutrino types
- No specific evidence for sterile neutrinos.
- Limits on sterile from solar, atmospheric measurements.

Neutrino properties

-The most favored explanation for the data to date is <u>Neutrino</u> <u>Oscillations of 3 active massive neutrino types</u>.

- -Other possibilities are not completely ruled out, but less favored
- Flavor Changing Neutral Currents
- Resonant Spin Flavor Precession for solar neutrinos
- Violation of Equivalence Principle
- CPT Violation
- Sterile neutrinos

In the discussion to follow, I will concentrate on the favored basis of Neutrino Oscillations with three active massive neutrinos and consider the further information to be obtained on this basis (including some further study of the sub-dominant effects above). Using the oscillation framework:

If neutrinos have mass:

$$\left|\nu_{l}\right\rangle = \sum U_{li} \left|\nu_{i}\right\rangle$$

For 3 Active neutrinos. (MiniBoone has recently ruled out LSND result)

Matter Effects – the MSW effect

The extra term arises because solar v_e have an extra interaction via W exchange with electrons in the Sun or Earth.

In the oscillation formula: $\sin^2 2\theta_m = \frac{\sin^2 2\theta}{(\omega - \cos 2\theta)^2 + \sin^2 2\theta}$ $\omega = -\sqrt{2}G_F N_e E / \Delta m^2$

> MSW effect can produce an energy spectrum distortion and flavor regeneration in Earth giving a Day-night effect. If observed, matter interactions define the mass heirarchy.

Until 2001/2, it was uncertain whether low v_e fluxes came from oscillations or solar models

Neutrino Detection in H₂O & D₂O

Elastic Scattering (ES)

 $v_x + e^- \rightarrow v_x + e^$ v_x , but enhanced for v_e by a factor of 6

proton

Charged-Current (CC) $v_e + d \rightarrow e^- + p + p$ $E_{thresh} = 1.4 \text{ MeV}$ $v_e \text{ only}$

Neutral-Current (NC)

 v_x +d $\rightarrow v_x$ +n+p E_{thresh} = 2.2 MeV

Equally sensitive to $v_e v_\mu v_\tau$

Solar Neutrino Physics From SNO (+SK)

Clear Evidence: Flavor change + active neutrino appearance

Super-Kamiokande III

- SK-III reconstructed April 2006
- 40% photocathode coverage
- tank filled July 11, 2006
- purifying water since October 2006

SK-I day-night asymmetry converted to v_e asymmetry

$$\frac{N-D}{(N+D)/2} = 0.033 \pm 0.031_{-0.020}^{+0.019}$$

SK-1 obtained beautiful data on energy spectrum but saw no distortion.

The Sudbury Neutrino Observatory: SNO

"The Sudbury Neutrino Observatory", The SNO Collaboration Nuclear Instruments and Methods in Physics Research A449 (2000) pp. 172-207

The heavy water has recently been returned and development work is in progress on SNO+ with liquid scintillator and ¹⁵⁰Nd additive.

SNO: 3 neutron (NC) detection methods (systematically different)

Phase I (D₂O) Nov. 99 - May 01

n captures on ²H(n, γ)³H Effc. ~14.4% NC and CC separation by energy, radial, and directional distributions Phase II (salt) July 01 - Sep. 03

2 t NaCl. n captures on ³⁵Cl(n, γ)³⁶Cl Effc. ~40% NC and CC separation by event isotropy Phase III (³He) Nov. 04-Dec. 06

40 proportional counters ³He(n, p)³H Effc. ~ 30% capture Measure NC rate with entirely different detection system.

 $n + {}^{3}He \rightarrow p + {}^{3}H$

SNO Phase 2 data: 391 live days with salt

hep-ex/0502021 March 2005

SNO Phase 2 with salt

EVENTS VS VOLUME: Bkg < 10%

(c)

1.4

1.6

ρ

13

New KamLAND result reported this month

- 182 GW of reactor power in Japan, Korea
- Average distance 180 km
- 2881 ton-years
- \bullet Undistorted spectrum rejected at more than 5 σ
- arXiv:0801.4589v2 [hep-ex]

SK-III Goal Future prospects by SK-III

Present Phase: SNO Phase III

Neutral-Current Detectors (NCD): An array of ³He proportional counters

> 40 strings on 1-m grid ~440 m total active length

Search for spectral distortion

• Improve solar neutrino flux by breaking the CC and NC correlation (ρ = -0.53 in Phase II):

CC: Cherenkov Signal \Rightarrow **PMT Array NC**: n+³He \Rightarrow **NCD Array**

• Improvement in θ_{12} , as

 $\frac{\phi^{CC}}{\phi^{NC}} \approx \sin^4 \theta_{13} + \cos^4 \theta_{13} \sin^2 \theta_{12}$

Correlations	D ₂ O unconstrained	D ₂ O constrained	Salt unconstrained	NCD
NC,CC	-0.950	-0.520	-0.521	~0
CC,ES	-0.208	-0.162	-0.156	~-0.2
ES,NC	-0.297	-0.105	-0.064	~0

Blind Analysis

Phase III production data taking Dec 2004 to Dec 2006. D₂O now removed.

SNO NCD Signals

 $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H}$ (q=768 keV)

Pulse shape analysis to discriminate neutrons and alphas underway

Another analysis is almost complete that combines data from the first two SNO Phases and reduces the threshold by ~ 1 MeV.

This also provides improved accuracy on CC/NC flux ratio and therefore θ_{12} mixing matrix element.

Very low Background. About one count per 2 hours in region of interest. Can be reduced by a large factor through pulse shape discrimination.

Future solar neutrino measurements pp, ⁷Be, pep, ⁸B

NEUTRINO PHYSICS

- Confirm matter effects (MSW).

- Improve
$$\Theta_{12}, \Theta_{13}$$
.

- Search for effects of sterile v, Non-Standard Interactions, Mass-varying neutrinos.

- SOLAR PHYSICS
- Accurate measurement of neutrino luminosity (pp, pep).
- Test solar modelling
- Observe CNO neutrinos.

New Physics

$$L^{NSI} = -2\sqrt{2}G_F(\bar{\nu}_{\alpha}\gamma_{\rho}\nu_{\beta})(\epsilon_{\alpha\beta}^{f\tilde{f}L}\bar{f}_L\gamma^{\rho}\tilde{f}_L + \epsilon_{\alpha\beta}^{f\tilde{f}R}\bar{f}_R\gamma^{\rho}\tilde{f}_R) + h.c. \quad \text{NC non-standard Lagrangian}$$
(1)

Solar Model Chemical Controversy

• Bahcall, Serenelli and Basu Solar Model 2005

PREDICTED SOLAR NEUTRINO FLUXES FROM SEVEN SOLAR MODELS

Model	pp	pep	hep	⁷ Be	8 ⁸ B	$^{13}\mathrm{N}$	¹⁵ O	¹⁷ F
BP04(Yale)	5.94	1.40	7.88	4.86	5.79	5.71	5.03	5.91
BP04(Garching)	5.94	1.41	7.88	4.84	5.74	5.70	4.98	5.87
BS04	5.94	1.40	7.86	4.88	5.87	5.62	4.90	6.01
BS05(¹⁴ N)	5.99	1.42	7.91	4.89	5.83	3.11	2.38	5.97
BS05(OP)	5.99	1.42	7.93	4.84	5.69	3.07	2.33	5.84
BS05(AGS, OP)	6.06	1.45	8.25	4.34	4.51	2.01	1.45	3.25
BS05(AGS, OPAL)	6.05	1.45	8.23	4.38	4.59	2.03	1.47	3.31

- Helioseismology "incompatible" with low metallicity solar models.
- Measurements of pep and ⁷Be can sort out matter interactions of v's as well as solar models.

Future Experiments

- charged-current reaction (v_e only)
 - LENS (In) pp
 - MOON (Mo) pp
- neutrino-electron elastic scattering (v_e + small $v_{\mu,\tau}$)
 - BOREXINO
 KAMLAND
 SNO+
 XMASS
 CLEAN
 PP

First Results From Borexino in Gran Sasso

300 tons of liquid scintillator (100 tons fiducial)

measured rate of ⁷Be neutrinos

- $47 \pm 7_{stat} \pm 12_{syst}$ counts/day no oscillation expectation
- 75 ± 4 counts/day theoretical prediction with oscillations
- 49 ± 4 counts/day

KamLAND solar measurements

First distillation campaign ended in July 2007

Purified Liquid Scintillator : 1000 tons

Distillation and N₂ purge against 85 Kr, 210 Bi, 210 Po, 40 K

- Not yet reached the goal but significant progress.
- Second purification campaign to come.

Parallel efforts toward CNO v observation

New dead-time-free electronics have been developed and tested aiming at ¹¹C rejection.

SNO+ (1000 tonnes highly purified Liquid Scintillator): 2010

Backgrounds assumed at Kamland observed values plus their purification objectives for ²¹⁰Bi, ⁴⁰K. Negligible background from ¹¹C at SNOLAB depth.

New International Underground Facility: SNOLAB

Phase 1 Experimental area: Available 2008 Cryopit addition: Excavation nearly completed. Available 2009. Total additional excavated volume in new lab: 3 times SNO volume.

For Experiments that benefit from a very deep and clean lab:

• v - less Double Beta Decay

2

3

Equivalent Vertical Depth (km.w.e.)

SNOLAB (Same depth as SNO: 2 km)

Excavation Status

Now walls are washed and painting nearly complete

Letters of Intent/Interest for SNOLAB

Dark Matter:

Timing of Liquid Argon/Neon Scintillation: DEAP-1 (7 kg), MINI-CLEAN (100 kg),

DEAP/CLEAN (1 Tonne)

Freon Super-saturated Gel: PICASSO

Silicon Bolometers: SUPER-CDMS (25 kg)

Neutrino-less Double Beta Decay:

¹⁵⁰Nd: Organo-metallic in liquid scintillator in SNO+

¹³⁶Xe: EXO (Gas or Liquid) (Longer Term)

CdTe: COBRA (Longer Term)

Solar Neutrinos:

Liquid Scintillator: SNO+ (also Reactor Neutrinos, Geo-neutrinos)

Liquid Ne: CLEAN (also Dark Matter) (Longer Term)

SuperNovae:

SNO+: Liquid scintillator; HALO: Pb plus SNO ³He detectors.

6 th Workshop and Experiment Review Committee Aug 22, 23, 2007 <u>www.snolab.ca</u> RED IMPLIES APPROVED FOR SITING

Summary: F. Piquemal - TAUP 2007

Experiment	Isotope	Enriched isotope mass (kg)	T _{1/2} (yr)	<m<sub>v> (eV)</m<sub>	Start	Status
CUORE	¹³⁰ Te	203	2.1 10 ²⁶	0.03 - 0.07*	2011	Funded
GERDA phase I	⁷⁶ Ge	17.9	3. 10 ²⁵	0.2 - 0.5*	2009	Funded
phase II		40	2. 10 ²⁶	0.07 - 0.2*	2011	Funded
Majorana	⁷⁶ Ge	30 - 60	1.10 ²⁶	0.1 – 0.3*	2011	R&D
EXO-200 (Liquid, gas)	¹³⁶ Xe	200	6.4 10 ²⁵	0.2 - 0.7*	2008	Liquid Funded
SuperNEMO	⁸² Se	100	2. 10 ²⁶	0.05- 0.09*	2011	D <i>&</i> N
	¹⁵⁰ Nd	100	10 ²⁶	0.07	2011	N&D
CANDLES	⁴⁸ Ca	0.5		~0.5	2008	Funded
MOON II	¹⁰⁰ Mo	120		0.09 - 0.13	?	R&D
DCBA	¹⁵⁰ Nd	20			?	R&D
SNO+	¹⁵⁰ Nd	56 - 500		0.03-0.08	2010	R&D
COBRA	¹¹⁶ Cd, ¹³⁰ Te	420	?	?	?	R&D

SNO+: Neutrino-less Double Beta Decay: ¹⁵⁰Nd

- Nd is one of the most favorable double beta decay candidates with large phase space due to high endpoint: 3.37 MeV.
- Ideal scintillator (Linear Alkyl Benzene) has been identified. More light output than Kamland, Borexino, no effect on acrylic.
- Nd metallic-organic compound has been demonstrated to have long attenuation lengths, stable for more than a year.
- 1 tonne of Nd will cause very little degradation of light output.
- Isotopic abundance 5.6% (in SNO+ 1 tonne Nd = 56 kg ¹⁵⁰Nd)
- Collaboration with SuperNemo to enrich ¹⁵⁰Nd using French laser isotope facility. CEA/IN2P3 agrees to prototype study in 07/08. Possibility of hundreds of kg of isotope production.
- SNO+ Capital proposal to be submitted Oct. 2008.
- Plan to start with natural Nd in 2010.

SNO+ (¹⁵⁰Nd ν - less Double Beta Decay)

0v: 1057 events per year with 500 kg ¹⁵⁰Nd-loaded liquid scintillator in SNO+.

Simulation assuming light output and background similar to Kamland.

Sensitivity: Natural Nd (56 kg isotope): $m_{\nu\beta\beta} \sim 0.1 \text{ eV}$ 500 kg enriched ¹⁵⁰Nd: $m_{\nu\beta\beta} \sim 0.03 \text{ eV}$

R&D in Canada: EXO-gas double beta counter

For 200 kg, 10 bar, box is 1.5 m on a side

DARK MATTER

DEAP/CLEAN: 1 Tonne Fiducial Liquid Argon

- Scintillation time spectrum for Ar enables WIMP recoils to be separated from gammas from ³⁹Ar background.

- Simulation indicates that ³⁹Ar and other gamma-beta backgrounds can be discriminated from WIMPS using only scintillation light for up to 1 tonne fiducial Volume of liquid argon.

- DEAP and CLEAN collaborations have come together to build new detectors with a simple and easily scaled technology at SNOLAB.

M.G. Boulay & A. Hime, astro-ph/0411358

Dark Matter detection with liquid Argon

Very simple concept made possible by Detecting light only: Acrylic vessel with Ar, surrounded by PMT's (sound familiar?)

Program: DEAP-1 (7Kg) now operating Underground Mini-Clean (2008/9): 360kg (100 kg fiducial) DEAP/CLEAN (2010): 3600 kg (1000 kg fducial)

Tests of discrimination with DEAP-1

DEAP-1 discrimination tests using 511 keV gammas

Ran DEAP-1 on surface to background limit (6×10^{-8} PSD) then moved to SNOLAB where it is now running underground for further PSD studies and DM search.

PSD agrees with statistical model over seven orders of magnitude.

Projection: Light alone is sufficient for 10⁹ background reduction needed for 1 tonne DM experiment with natural Ar.

PSD already sufficient for 1 tonne fiducial Ar if depleted x 20 in ³⁹Ar. (See Galbiati et al)

WIMP Sensitivity with 1 tonne of argon

For nominal threshold of 20 keV visible energy, 1000 kg LAr for 3 years is sensitive to 10⁻⁴⁶ cm². Present schedule: Mini-CLEAN 100 kg Fiducial: 2009, DEAP/CLEAN: 1000 kg Fiducial: 2010

WIMP-Nucleus Spin-Dependent Interaction The Superheated Droplet Detector

- droplets superheated at ambient T & P
- 50 to 100µm droplets of carbofluorides

dispersed in polymerised gel

active liquids:

 $C_4F_{10} (T_b=-1.7 \circ C), C_3F_8 (T_b=-36.7 \circ C)$

- ...used for n-dosimetry (BTI-Chalk River)
- Recoil energy threshold E_{rec} = O(keV)
- insensitive to β, γ and cosmic µ radiation.

Fluorine is very sensitive for the spin-dependent interaction

Montreal, Queen's Indiana, Pisa, BTI

Up to 2.6 kg being run in 2007-08

Acoustic

Signal

CONCLUSIONS

- Astroparticle physics is an exciting and growing field with continuing contributions to both particle physics and astronomy.
- If you can go deep and clean in a dedicated laboratory,
 you can address very fundamental questions that are
 otherwise inaccessible.
- Look for many new results in the next few years in neutrino physics, dark matter, double beta decay, with the potential for very fundamental discoveries.