Opportunities for US-Japan Collaboration: A Personal View

Jim Siegrist Director, Physics Division, LBNL

With thanks to Josh Frieman, Roger Blandford, Angela Olinto and Scott Dodelson

IPMU Opening Symposium 12-March-08

Building International Collaborations

There are 3 major components to the US program in High Energy Physics with potential for collaboration

- Accelerator-based particle physics at the energy frontier
- Accelerator and reactor-based neutrino experiments
- Astrophysics and Cosmology

Accelerator-based physics already has strong collaborations; astrophysics and cosmology are rich opportunities

Particle Astrophysics and Cosmology: A "grassroots" effort supported by labs

- Numerous efforts initiated by university and lab groups:
 - SCP, GLAST, SDSS, SDSSII
 - DES, BOSS, SNAP, LSST
- DOE-supported discovery of dark energy is among the major achievements of our field.
- Dark energy is the *biggest* challenge in fundamental physics.

Outline

- Cosmology
- Deep Underground Science and Engineering Lab (DUSEL)
- High Energy Astrophysics
- Many experiments I will mention have foreign participation...I'll indicate the thrust areas of interest to the US community

To begin Cosmology, we look at Dark Energy and Cosmic Acceleration

What is causing cosmic acceleration?

Dark Energy:

$$G_{\mu\nu} = 8\pi G[T_{\mu\nu}(\text{matter}) + T_{\mu\nu}(\text{dark energy})]$$

DE equation of state : $w = T_i^i / T_0^0 < -1/3$

Gravity:

$$G_{\mu\nu} + f(g_{\mu\nu}) = 8\pi G T_{\mu\nu} (\text{matter})$$

Key Experimental Questions:

- 1. Is DE observationally distinguishable from a cosmological constant, for which w = -1?
- 2. Can we distinguish between gravity and dark energy? Combine distance with structure-growth probes
- 3. Does dark energy evolve: w=w(z)?

The nature of Dark Energy?

Probe dark energy through the history of the expansion rate:

$$\frac{H^{2}(z)}{H_{0}^{2}} = \Omega_{m}(1+z)^{3} + \Omega_{DE} \exp\left[3\int (1+w(z))d\ln(1+z)\right] + (1-\Omega_{m} - \Omega_{DE})(1+z)^{2}$$

and the growth of large-scale structure:

$$r(z) = F \left[\int \frac{dz}{H(z)} \right]$$
$$\frac{dV}{dzd\Omega} = \frac{r^2(z)}{H(z)}$$

Four Primary Probes (DETF): Weak Lensing cosmic shear Supernovae Baryon Acoustic Oscillations Cluster counting

Distance r(z) + growth Distance Distance+H(z)Distance + growth

 $\delta \rho(a)$

Dark Energy Task Force ReportDefined Figure of Merit to compareexperiments and methods $FoM \propto \frac{1}{\sigma(w_0)\sigma(w_a)}$

 Highlighted 4 probes: SN, WL, BAO, CL
 Envisioned staged program of experiments:

Stage II: on-going or funded as of 2006 Stage III: intermediate in scale + time Stage IV: longer-term, larger scale LSST, JDEM Much weaker current constraints on Time-varying Dark Energy

3-parameter model

$$w(z) = w_0 + w_a(1-a)$$

marginalized over Ω_m

Kowalski et al 08

Growth of Largescale Structure

Robustness of the paradigm recommends its use as a Dark Energy probe

Price: additional cosmological and structure formation parameters

Bonus: additional structure formation parameters

Expansion History vs. Perturbation Growth

Growth of Perturbations probes *H(z)* and gravity modifications

Linder

 $g'' + \left[5 + \frac{1}{2} \frac{d \ln H^2}{d \ln a}\right] g' a^{-1} + \left[3 + \frac{1}{2} \frac{d \ln H^2}{d \ln a} - \frac{3}{2} G \Omega_m(a)\right] g a^{-2} = S(a)$

Caveat: Representative list, not guaranteed to be complete or accurate

Survey	Description	Probes	
Ground-based:			
ACT	SZ, 6-m	CL	II
APEX	SZ, 12-m	CL	II
SPT	SZ, 10-m	CL	II
VST	Optical imaging, 2.6-m	BAO,CL,WL	II
Pan-STARRS 1(4)	Optical imaging, $1.8-m(\times 4)$	All	II(III)
DES	Optical imaging, 4-m	All	III
Hyper Suprime-Cam	Optical imaging, 8-m	WL,CL,BAO	III
ALPACA	Optical imaging, 8-m	SN, BAO, CL	III
LSST	Optical imaging, 6.8-m	All	IV
AAT WiggleZ	Spectroscopy, 4-m	BAO	II
HETDEX	Spectroscopy, 9.2-m	BAO	III
PAU	Multi-filter imaging, 2-3-m	BAO	III
SDSS BOSS	Spectroscopy, 2.5-m	BAO	III
WFMOS	Spectroscopy, 8-m	BAO	III
SKA	km ² radio telescope	BAO, WL	IV
Space-based:			
JDEM Candidates			
ADEPT	Spectroscopy	BAO, SN	IV
DESTINY	Grism spectrophotometry	SN	IV
SNAP	Optical+NIR+spectro	SN, WL	IV
Proposed ESA Missions			
DUNE	Optical imaging	WL	
SPACE	Spectroscopy	BAO	
eROSITA	X-ray	CL	
CMB Space Probe	-		
Planck	SZ	CL	
Beyond Einstein Probe			
Constellation-X	X-ray	CL	IV

Table 3: Dark energy projects proposed or under construction. Stage refers to the DETF time-scale classification. Type Ia SN Peak Brightness as calibrated Standard Candle

Peak brightness correlates with decline rate

Variety of algorithms for modeling these correlations

After correction, σ~ 0.15 mag (~7% distance error)

Global SNIa Hubble Diagram 2007

Hamuy 1996a,b **Riess** 1998 Perlmutter 1999 **Riess** 1999 **Riess 2001 Tonry 2003** Knop 2003 Barris 2004 **Riess 2004** Clochiatti 2005 Astier 2006 Jha 2006 Wood-Vasey etal 07

Large-scale Correlations of SDSS Luminous Red Galaxies

Redshiftspace Correlation Function

Baryon Acoustic Oscillations seen in Largescale Structure

Eisenstein, et al. 05

Weak lensing: shear and mass

Jain

Clusters form hierarchically

Kravtsov

5 Mpc

Clusters and Dark Energy Number of clusters above observable mass threshold

Requirements

1.Understand formation of dark matter halos

2.Cleanly select massive dark matter halos (galaxy clusters) over a range of redshifts
3. Redshift estimates for each

3.Redshift estimates for each cluster

4.Observable proxy O that can be used as cluster mass estimate:

p(O|M,z)

Primary systematic: Uncertainty in bias & scatter of mass-observable relation

Systematic Errors

 Supernovae: uncertainties in dust and SN colors; selection biases; ``hidden" luminosity evolution; limited low-z sample for training & anchoring

 BAO: redshift distortions; galaxy bias; non-linearities; selection biases

 Weak Lensing: additive and multiplicative shear errors; photo-z systematics; small-scale non-linearity & baryonic effects

 Clusters: scatter & bias in mass-observable relation; uncertainty in observable selection function; small-scale non-linearity & baryonic effects

Observations of CMB temperature anisotropies are the basis of modern cosmology

Cosmic Microwave Background: Evidence for Inflation

CMB polarization sensitive to gravity waves produced during inflation.

CMB Polarization experiments probe physics at the GUT-scale.

Amplitude of B-mode signal tied to physics of inflation

Tensor/scalar ratio teaches us about the GUT scale physics driving inflation.

$$r = 0.1 \left(\frac{V^{1/4}}{3 \times 10^{16} \, GeV}\right)^4$$

US-Funded CMB Experiments

Experiment	Funding Estimate (\$M/yr)	Comments
BICEP	NSF 0.5	40' @ 100,150 GHz; Observing for 2 yrs; 3^{rd} season upcoming; 100 detectors; will get to r=0.1. Plans for detector upgrades
PolarBear	NSF 1.5	4' @ 90,150,200 GHz; NSF Funded for 5 yrs, to start in 2009
EBEX	NASA 1	8' @ 90,150,200 GHz; Balloon Funded by NASA; test flight this summer; science flight 2010
SPIDER	NASA 1	20-70' @ 90,150,220 GHz; Balloon funded by NASA; test flight 2010; science flight 2011
ACT	NSF 1.5	Planning upgrade to do polarization
SPT	NSF 3	Planning upgrade to do polarization
R&D	NASA 4 NSF 1	Technology development, theory, data analysis
QUIET	NSF 1	12' @ 44,90 GHz; NSF funded first phase + Now applying for 2 nd phase
WMAP	NASA 3	Funding continues through at least 2010
Planck	NASA 8	Launch this year
Other	All 1-2	COFE, BLAST, NERSC,
Total	27	

SiDet (FNAL)

DOE Technology

TES detectors for CDMS

Figure 2 An FPGA motherboard is shown with one of its two analog converter mezzanine boards attached.

Backend Electronics designed at LBNL

CMB Data Analysis at NERSC

DOE institutions have contributed significant technological resources to this field

Center for Nanoscale Materials (Argonne)

Key Role of CMB

- CMB is the cornerstone of modern cosmology
- CMB polarization studies may provide evidence for inflation, non-zero neutrino mass, and the end of the Dark Ages.
- DOE plays a significant role, leveraging existing facilities/talents.
- The future is promising: many upcoming polarization projects; plans for satellite mission; 21 cm surveys may point to new directions

LBNL Cosmology Program

Nearby Supernova Factory

Planck: next step in CMB after WMAP

Dark Energy Survey

BOSS: next step in BAO after SDSSII.

SNAP: measure expansion history and growth of large-scale structure.

- Must measure both to distinguish dark energy from failure of General Relativity.
- Space mission required to reduce systematics.
- SNAP builds on our pioneering program on supernova (SNe Ia) cosmology.
- A weak-lensing survey complements the SNe la to optimize program as shown by DETF.
- Anticipated DOE NASA competition for which SNAP will compete for construction.

SNAP R&D Achievements

New compact telescope optics concept proved exceptional performance in a rocket-borne experiment (key to JDEM). Founded on LBNL and UCB strong optics heritage from Keck

LBNL HEP IC group developed readout of high channel-count cryogenic pixel plane.

12M-pixel LBNL CCD with high QE out to 1.0 μ and low diffusion is radiation resistant. Same technology is baseline for LSST detectors.

Powerful collaboration of universities and labs with industry resulted in high QE out to 1.7 μ in 4M pixel format. Now detector of choice for other JDEM proposals.

Nearby Supernova Studies

Nearby Supernovae are critical to anchor the Hubble Diagram for SNAP or other experiments using SNe as distance markers

LBNL Supernova Factory is the first large scale nearby search and spectroscopic follow-up

SN discoveries and spectrometer also used by others including Keiichi Maeda of IPMU (current focus on very late times)

Future Nearby Studies

New program led by Charlie Baltay (Yale) will upgrade camera now used at Palomar and install in Chile

- Search operations will continue at Palomar with a new camera.
- Follow-up possibilities in Chile, Greece as well as the UH 2.2m now used in Hawaii
- We are investigating how to best balance photometry and spectroscopy in the new program

Baryon Oscillation Spectroscopic Survey (BOSS) and Dark Energy Survey (DES)

Part of SDSS-III, BOSS uses redshifts of 1.6M galaxies (z^{0} . 5) and Lyman- α forest of 0.16 M quasars (z^{2} .5) to determine cosmological parameters.

SDSS telescope at Apache Point

Replace red CCDs on SDSS camera with w/red-sensitive LBNL/SNAP CCDs, making it possible to go to higher-z

DES: LBNL furnishes CCDs to upgrade the camera at CTIO for DES. LBNL science role: SNe and WL. Detectors for DES now in production at LBNL Microsystems Lab.

LBNL Leadership roles in BOSS: PI: *David Schlegel* Instrument Scientist: *Natalie Roe* Survey Scientist: *Martin White*

Sloan Foundation agreed to support SDSS-III. Proposals pending at DOE and NSF. MOUs signed or in negotiations with many institutions:

Arizona Brazilian group UC Irvine UCSC Cambridge Case Western FNAL Florida French group Heidelberg Japanese group Johns Hopkins Korean Inst. Adv. Study LBNL LANL MPA Garsching MSU New Mexico State NYU OSU Penn State Portsmouth Astrn. Inst. Princeton Princeton Virginia Wasington

DES Objectives (Fermilab-Led)

The Dark Energy Survey aims to extract cosmological information on dark energy from

- cluster counting and spatial distribution of clusters at 0.1 < z < 1.3,
- 2. the shifting of the galaxy spatial angular power spectra with redshift,
- weak lensing measurements on several redshift shells to z~1, and 4) 2000 supernovae at 0.3 < z < 0.8.

PolarBeaR

Led by Adrian Lee, UC **Berkeley and LBNL** Major sensor development at LBNL Will be deployed in Chile after testing in California

Cosmology Conclusions

Excellent prospects for increasing the precision on Dark Energy parameters from a sequence of increasingly complex and ambitious experiments over the next 5-15 years

Exploiting multiple probes will be key: we don't know what the ultimate systematic error floors for each method will be. Combine geometric with structure-growth probes to help distinguish modified gravity from dark energy.

The Deep Underground Science and Engineering Laboratory at Homestake

Kevin T. Lesko, LBNL-NSD, DUSEL PI

Long Baseline neutrino, Nucleon Decay, and Ancillary Programs

- Long Baseline Neutrinos and Nucleon Decay
 - Same detectors
 - Discovery

- Neutrino mass hierarchy
- **θ**₁₃
- CP violation
- Nucleon decay
- Diverse Program
 - Full MNSP matrix
 - Atmospheric and solar neutrinos
 - Supernovae neutrinos
- World-class Program

37

Homestake anticipates beginning with a ~150-kt Detector (cavity + instrumentation) in Initial Suite of Experiments:

- Water Cherenkov Detector ≈ 4 to 5 SuperKs
- Using existing intensity or near-term upgrades
- Build towards ~ 500-kt or more in modules and enhanced beams ~ 2 MW BP
- Parallel LAr efforts, including deployments of prototype detectors in the near term

R&D to begin in Sanford Lab

- Geotechnical assessment and excavation plans
- EA and waste rock disposal
- Access/support improvements and customization

Direct Searches for Dark Matter

- Strong science motivation for discovery
 - Convergence of particle and astrophysics theory/experiment
- Significant recent advancements in sensitivity
 - US is current world leader in field
- Direct searches testing physics complementarity to accelerator work
 - Also indirect/astro signal searches
- Flagship science at DUSEL

There is a World-wide Need for Space Underground

Assessment and vetting by Homestake Team, S-1 Panel, Town Meeting Group leaders, and community spokespeople

Site	Location	Depth (kmwo)	Total Space for Research	Total Available
Sile	Location	(KIIIWE)	(11-2)	Space (m z)
Europe				
Baksan Neutrino Observatory (BNO)	Russia	0.9	600	0
Routhy	1112	9.7	1 500	
Center for Linderground Physics at Pubasalmi	Eigland	4.0	2,050	2.050
Gran Sasso (LGNS)	Italy	3.2	17,300	0
Canfranc	Spain	2.4	1,000	1,000
Laboratoire Subterrain de Modane	France	4.7	400	0
Solotwina Underground Laboratory (SUL)	Ukraine	1.1	700	500
Total Europe			24,150	3,550
Total Europe below 4.0 kmwe			1,050	50
Asia				
Kamioka	Japan	2.1	10,000	0
OTO-Cosmo Observatory	Japan	1.4	80	0
T2L	Korea	2.0	100	
Total Asia	10018	3.0	10 180	0
Total Asia below A 0 kmwe			10,180	0
				, v
Americas				
SNOLab	Canada	6.0	3,055	500
Soudan Underground Laboratory (SUL)	US	2.0	2,300	0
Waste Isolation Pilot Plant (WIPP)	US	1.6	920	400
Total Americas			6,275	900
Total Americas below 4.0 kmwe			3,055	500
WORLD TOTAL			40,605	4,450
WORLD TOTAL BELOW 4.0 KMWE			4,103	330
DUSEL	US	0.3	640	640
		1.7	20.000	20.000
		3.2	1.010	1.010
		41	7 200	7 200
		64	4 500	4 500
		7.0	4,500	100
		7.0		100
Space required for Initial Suite of Experiments		0.3	2,350	
		1.7	20,000	
		3.2	1,010	
		41	12 300	
			7,000	
		0.4	7,900	
		7.0	350	

Campus Concepts

Homestake

Deep Underground Science and Engineering Laboratory

Planning to develop four primary campus locations for research:

- 1. Surface campus at Yates Complex
- 2. Near-surface campus at 300 Level
- 3. Mid-level campus at 4850 Level
- 4. Deep-level campus at 7400 Level

Infrastructure will be maintained for access to additional, selected levels for bio- and geo- sciences and for unique experiments that require specific or isolated sites.

DUSEL Summary

World-class Physics Programs Unique capabilities in the world - 3 or 4 flag-ship experiments identified Efforts underway at Sanford Lab to prepare the site (\$126M) independent of and parallel to the DUSEL efforts, with \$60M in hand FY08 phased program for experiments

Long-term site

- tailored access
- 30 + year horizon
- no competition

LBNL Detector R&D

Dave Nygren is pursuing detector concepts that might significantly strengthen the underground physics program

A high pressure Xe TPC could enhance searches for WIMPs and for 0-v double beta decay Combined search for WIMPs and 0-v double beta decay
■ High-pressure xenon gas TPC can provide:

- superb energy resolution for 0-v search $\delta E/E < 4$ x 10⁻³ FWHM (at 2.5 MeV)
- Seamless fully-active fiducial surface for 100% rejection of charged backgrounds from surfaces
- Much better S_2/S_1 resolution than LXe for rejection of electron recoils in WIMP search
- No compromises for either search, and scales well up to 1000 kg.

How is this possible?

Electroluminescent TPC readout planes

- Convert ionization signal to light signal
- Most precise amplification mechanism
- Single electron sensitivity for WIMP search
- "Count" electrons, match Fano factor (F = .15)
- Very high statistical precision possible
- Dynamic range problem avoided by measuring total light signal on opposite readout plane.

Signal: $\beta\beta$ event or WIMP

High Energy Astrophysics

A look at the highest energy particles

GLAST

- Joint NASA-DOE-Italy- France-Japan-Sweden, Germany... mission
- Launch May 16 2008
 - Cape Canaveral
- Success of GLAST is top priority
 50-100 x EGRET; high energy extension
 - Future program likely ground-based for a while

EGRET All-Sky Gamma-Ray Survey Above 100 MeV

red: 0.1-0.4 GeV green: 0.4-1.6 GeV blue: >1.6 GeV

GLAST

LAT 0.02 - 300 GeV 2.5 sr, 0.3 - 0.9m² 5° - 5'resolution ∆In E ~ 0.1 3 x 10⁻⁹ cm⁻² s⁻¹ (>0.1 GeV, point source) 10⁹ photons (3Hz) All sky every 3hr

Sources after a decade? 10,000 Active Galactic Nuclei 1000 Gamma Ray Bursts 100 Pulsars 100 Supernova Remnants 10 Galaxies 10 Clusters of Galaxies 10 X-Ray Binaries ? Unidentified Sources

GBM

- 0.01-30 MeV
- 9sr, 100 cm².
- 1º resolution
- ▲In E ~ 0.1
- Combine with Swift

GLAST Objectives

- To understand the mechanisms of particle acceleration in AGNs, pulsars, and SNRs.
- Resolve the gamma-ray sky: unidentified sources and diffuse emission.
- Determine the high-energy behavior of gamma-ray bursts and transients.
- Probe dark matter and early Universe.

Exploring the Terascale

VERITAS (NSF+DOE+Smithsonian)

~1-10 TeV

- ~10 ns flash
- •~1° @ 10 km->10⁴ m²
- Stereo imaging
- ~ 0.1-100TeV
- ~5° field of view
- ~5' PSF per photon
- ~100 sources

Particle Astrophysics at Ultra High Energies

The Energy Frontier

IceCube

IceTop Air shower detector 80 pairs of ice Cherenkov tanks Threshold ~ 300 TeV

1450

In Ice

Goal of 80 strings of 60 optical modules each

17 m between module's 2450m

2008/09: add 18 strings and tank stations

2007-2008 : 18 strings 2006-2007: 13 strings 2005-2006: 8 strings 2004-2005 : 1 string AMANDA-II 19 strings 677 modules

Current configuration: 40 strings, 40 IceTop stations plus AMANDA

Completion by 2011.

Funded: NSF MREFC FY07 \$24.4M FY08 \$25.9M FY09 \$11.3M FY10 \$0.95M

The Pierre Auger Observatory

3000 km² area observatory in Mendonza, Argentina 1600 water Cherenkhov detectors - 1.5 km surface array 4 fluorescence sites overlooking the array Built by 17 countries to discover the Origin of Ultra-High Energy Cosmic Rays

Cost: \$53M (under budget) US funding: DOE/NSF 50/50 US 27.5% Construction

Operations = 2.4% Capital Costs

Auger South 2007

began the New Era of Particle Astronomy by observing a correlation between 27 events above ~ 6×10^{19} eV and position of Active Galactic Nuclei within 75 Mpc.

GZK effect confirmed Sources are extragalactic Primaries are most likely protons

Science

The Pierre Auger Observatory

Auger North: very High Statistics > 10¹⁹ eV & Full Sky Coverage to

1. discover all sources within GZK sphere

3. study Hadronic Interactions above 300 TeV center of mass

4. detect GZK (Cosmogenic) Photons and Neutrinos

Year

Overall Conclusions

There is a rich program of Cosmology and Astrophysics

Many opportunities for building or strengthening collaborations between US and Japan