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Geometry is perhaps one of the oldest branch of mathe-

matics and is closest to fundamental physics. Geometry

and number theory are two subjects that form the core

of modern mathematics.

By geometry, I am referring to the “practical geometry”

as defined by Einstein. I quote some remarks of his

given at the Prussian Academy of Sciences in 1921:
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Albert Einstein

“(Practical) geometry, owes its existence to the need

which was felt of learning something about the behavior

of real objects.”
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“We may in fact regard it as the most ancient branch of

physics. Its confirmations rest essentially on induction

from experience, but not on logical inferences.”

“We will call this completed geometry ‘practical geome-

try,’ and shall distinguish it in what follows from ‘purely

axiomatic geometry.’ ”

There are many ways that geometry provides both the

language and the intuition for the physical world. Let us

focus what we call geometric structures on space (time)

that have been the major topics in modern geometry.
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I. Geometric structures built by local patching based

on local symmetries

In the 19th century, Sophus Lie started the investi-

gation of the continuous group of symmetries. Klein,

in his famous Erlangen program announced that one

should study geometry according to the symmetries of

the geometric structures.
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Sophus Lie Felix Klein

Some examples can be found in classical (extrinsic)

geometries where one studies differential invariants of

the submanifolds that are invariant under the projective

group, the affine group or the Möbius group acting on

the ambient space.
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The concept of distance in these geometries is no longer

important. When one attempts to go beyond sub-

spaces of Euclidean space and extend the above con-

cepts to subspaces of a manifold, one needs to con-

struct geometric structures over manifolds where coor-

dinate transformations preserve the above symmetries.

7



An important example is the modern concept of Rie-

mann surface. It was first (rigorously) defined by Weyl

to be a space which is covered by coordinate charts

where the coordinate transformation are holomorphic

mappings of one variable.

Hermann Weyl
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It gave rise to the concept of geometric structures de-

fined by those spaces that can be covered by coordinate

charts where the coordinate transformations belong to

some special group such as the (pseudo-)group of holo-

morphic transformations, the group of projective trans-

formations, the group of affine transformations or the

group of conformal transformations.
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An important question which has not been solved up to

now is to find the topological criterion for the existence

of such structures. In general, these are deep questions.

Consider even the simple question

Which manifolds admit flat affine structures?

We do not know whether the Euler number of such

manifolds should be zero or not. But we do know that

spheres cannot be covered by coordinate charts such

that the transition functions are linear.
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II. Geometric structures in terms of connections

It is difficult to follow Klein’s program for general spaces

as they may not admit any group of symmetries. Cartan

studied the concept of connections on the bundle of

frames over a manifold.

Elie Cartan
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The enlarged internal space then has a large contin-

uous group of symmetries (while the space itself may

not support any symmetries whatsoever). This allowed

Cartan to carry out the Klein program for general man-

ifolds.

The space of frames is called the principle bundle nowa-

days. The connection on such bundles allows one to

define a covariant derivative which is compatible with

the frame. The frames may be special and can be

identified with special group of symmetries such as or-

thogonal group, unitary group, etc.
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Parallel transportations along close paths carry frames

of special type back to frames of special type. In this

case, we say that the holonomy group is this group

of special type. Indeed, the holonomy group is a very

powerful symmetry group of the geometry that dictates

the geometry of the space.

It should be noted that much of the development of

parallel transportation (due to Levi-Civita in 1917 and

Schouten in 1918) and connections on space of frames

were motivated by the excitement of Einstein’s the-

ory of general relativity. However, these authors were

mostly interested in connections on the tangent bundle.
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Around 1918, Weyl started to study Abelian gauge the-

ories to unify gravity with Maxwell’s equations. Weyl

first used noncompact gauge group. In 1927, Fock and

London pointed out that in quantum mechanics, Weyl’s

connection should be made purely imaginary. Weyl’s

theory (as Weyl noticed himself in 1929) then became

a gauge theory with the structure group of a circle.

The connection now preserves lengths, overcoming an

objection of Einstein.
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The theory of fiber bundle was developed in more de-

tail soon afterwards by Cartan and his students: Ehres-

mann, Chern and others.

The topologists Whitney and Pontryagin made funda-

mental contributions towards the basic invariants of

fiber bundle: their characteristic classes.
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Shiing-Shen Chern

In the works of Cartan and Chern, they were very much

interested in the equivalence problem in geometric struc-

tures: basically one likes to find all calculable invariants

of the geometric structures so that one can determine

the complete local structure of the geometry.
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A good example is to determine the complete local in-

variants of a real (pseudoconvex) hypersurface in com-

plex Euclidean space that are invariant under the group

of biholomorphic transformations of the complex Eu-

clidean space. This is a problem that Cartan, Tanaka,

Chern-Moser made fundamental contributions in.
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If the frames are the frames of the tangent space of

the manifold, the connection has another feature: the

torsion tensor of the connection, defined by

DXY −DYX − [X,Y ]

and the connection is said to be symmetric if the torsion

tensor vanishes.

The torsion tensor has not been understood well. In

many occasions, it can be considered to be the inte-

grability condition for geometric structures to exist.
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Geometric structures can be constructed in several steps.

The basic goal is to find a computable criterion to check

whether a manifold admits a geometric structure.

A good example is to construct complex structures

over a given topological manifold. (Those manifolds

that can be covered by coordinate charts in complex

Euclidean spaces where the coordinate transformations

are holomorphic.)
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If a complex structure exists, then there is an algebraic

structure on the tangent space of the manifold. It is

called an almost complex structure where an endomor-

phism J acts on the tangent space with J2 = −identity.

Its eigenvalues are i or −i.

There is a way to determine whether a manifold admits

a J structure or not. The conditions can be written in

terms of computable invariants such as characteristic

classes. So the existence theory is quite satisfactory.
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However, an important problem is to determine whether

the J structure can be constructed from a complex

structure of the manifold or not. In other words, we

need to construct locally defined coordinate functions

that solves the ∂̄ equations.

This was accomplished by the Newlander-Nirenberg the-

orem where the torsion-free condition is the condition

for an almost complex structure to be integrable. How-

ever, the problem to find a topological criterion for a

smooth manifold to support an almost complex struc-

ture which is torsion-free is still mysterious.
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Kunihiko Kodaira

For complex dimension two, the deep works of Kodaira,

based on the Atiyah-Singer index theorem, shows that

there are many manifolds that supports some almost

complex structure, but cannot admit any integrable

complex structure.
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A definite answer to the question whether an almost

complex manifold can be deformed to admit an inte-

grable complex structure will go a long way to under-

stand the topology of four dimensional manifolds.

On the other hand, the question for complex dimen-

sions greater than two can be easier. I conjecture

that almost complex manifold with complex dimensions

greater than two must admit an integrable complex

structure.
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The above mentioned holonomy group is a very impor-

tant algebraic entity associated to the connection. The

holonomy groups of the Levi-Civita connection were

classified by the works of Berger-Simons. The possible

holonomy groups are

1. Unitary group, which implies the manifolds admit a

Kähler structure.
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2. Special unitary group, which implies the manifold is

a Calabi-Yau manifold

3. Intersection of the unitary group with the symplectic

group, which implies the manifold is hyperkähler.

4. Sp(m)Sp(1) , m ≥ 2, the manifold is quaternionic

Kähler.

5. Exceptional holonomy groups G2 and Spin(7).

The Ricci curvature of these manifolds in class 2, 3, and

5 are all trivial. Hence it satisfies the vacua solution of

the Einstein equations.
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In the past 25 years, a great deal of efforts were de-

voted to understanding manifolds with special holon-

omy group partly because they are related to string

or M-theory. The Calabi conjecture gives a satisfac-

tory answer for SU(n) and Sp(n) holonomy. Joyce con-

structed manifolds with G2 and Spin(7) holonomy. But

Joyce’s constructions are not complete enough to give

a full parametrization of the geometric structures.
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We are also interested in those connections on a vec-

tor bundle with special structures. For four-manifolds,

there are connections whose curvature two-form satis-

fies a duality condition. They are anti-self-dual con-

nections on a Kähler surface and can be generalized

to Hermitian Yang-Mills connections on a holomorphic

bundle of a higher dimensional Kähler manifold. These

bundles play an important role in heterotic string the-

ory.
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Simon Donaldson Karen Uhlenbeck

Donaldson-Uhlenbeck-Yau proved their existence to be

equivalent to an algebraic condition that the bundle is

stable in the sense of geometric invariant theory. Gen-

eralization was made by Simpson to include a Higgs

field. The Hermitian Yang-Mills-Higgs theory can be

applied to construct geometric structures over Kähler

manifolds.
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III. Geometric structures obtained by the reduc-

tion of the geometric structures defined by special

holonomy group

There are geometric structures obtained by taking a

special ansatz to reduce the full non-linear equation to

simpler equations with less variables. The most com-

mon practice is to apply group actions and study the

orbit spaces. The development of moment map and its

symplectic reduction is a powerful example.
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In this way, equations of metrics with special holon-

omy can be reduced to structures of special interest.

For example, the concept of Sasaki-Einstein metric is

obtained by a reduction on a Calabi-Yau cone. Such

metrics appear recently in the string theory context of

AdS/CFT duality.
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IV. Structures defined by natural equations

The most important equations in geometry are related

to Einstein equations. Both the Lorentzian and the

Riemannian version have been important in the history

of geometry.

In the Riemannian category, finding Einstein metrics

with zero or nonzero cosmological constant is one of

the most important question in geometry.
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Another set of interesting questions come from the

study of dynamics of metrics. The most spectacular

equations is the Einstein equation for spacetime. In or-

der for a three dimensional manifold to be a spacelike

hypersurface in a vacuum spacetime, there are certain

constraints it must satisfy. There is a metric tensor gij

with scalar curvature R and a symmetric tensor pij on

the manifold so that

R− ‖p‖2 + (tr p)2 = 0

pij,i − (pii),j = 0
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Under mild conditions, Schoen and I classified the topo-

logical structures of such three dimensional manifold.

They can be described by connecting many copies of

the tubes - the product of a two dimensional sphere

with circle - with those three manifolds that are cov-

ered by the three spheres. We proved that if a region

within a fixed region of space is filled with matter such

that the matter density exceeds a certain value, then a

black hole must form in this region.
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The space of structures that satisfy the constraint equa-

tions is infinite dimensional. But it is invariant un-

der the flow defined by the Einstein equation. Hence,

the parametrization of this infinite dimensional space

is important. Some work was done by R. Bartnik and

Schoen and his students.
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Richard Hamilton

Another important dynamical system related to the Ein-

stein metric is given by Hamilton’s Ricci flow. Dur-

ing his investigation of the singularities of the flow, he

needed to study those spaces that evolve like a soliton.

Such a structure generalizes the concept of the Einstein

metric.
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V. Geometric structures related to string theory

Supersymmetry has been a powerful concept in modern

geometry.

In the past 25 years, much development of spaces with

special holonomy groups came from the works of physi-

cists. It is fair to say that without the input of string

theorists, the development of many aspects of this sub-

ject would have taken a much longer time. And without

the contributions of mathematicians, string theorists

would have lost their confidence in the consistency of

their theory, at least at the level of abstract theory.
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For geometric structures, string theory can provide many

fresh new ideas. However, physical intuitions do not

give a mathematical proof of the existence of the geo-

metric structures. In most cases, it takes a great deal

of analysis to prove the existence of structures. (Some-

times, one can prove such structures cannot exist and

physicists would call them no-go theorems. Finding an

existence or non-existence theorem is a good test for

theories proposed by physicists.)
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It is a nontrivial task to determine which geometric

structure can exist on a manifold. In fact, I recall that

about thirty-eight to forty years ago, most mathemati-

cians did not believe that non-trivial Kähler manifolds

with vanishing Ricci curvature exists.

Many unexpected applications on Calabi-Yau manifold

were discovered by string theorists. The most impor-

tant one was the discovery of the concept of various

dualities relating different string models. Since many

of the models were built on Calabi-Yau manifolds, they

can be checked by calculations on such manifolds.
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A Quintic Calabi-Yau (by A. Hanson)
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Vafa et al. has developed the concept of quantum co-

homology for Calabi-Yau manifolds and their properties

such as associativity were studied by WDVV (Witten,

Dijkgraaf, E. Verlinde and H. Verlinde).

The discovery of mirror symmetry by Greene-Plesser,

and Candelas et al. have opened up the eyes of most

algebraic geometers who are interested in enumerative

geometry, a subject where algebraic geometers calcu-

late the number of curves with fixed degree and genus.
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An important consequence of the works on mirror sym-

metry is the effective calculation of such numbers for

genus zero in a Calabi-Yau manifold. In the old days,

mathematicians did not have any idea how to find the

formula for the number of curves. Ideas from conformal

field theory, via mirror symmetry, led the way to find

such a formula. While the ideas from string theory was

not good enough to provide a proof, a rigorous proof

was found independently by Givental and Lian-Liu-Yau.

It solved an old problem in enumerative geometry. It

can also be considered as a nontrivial consistency check

of ideas of string theory.
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However, the problem of counting algebraic curves of

higher genus remains one of the most challenging prob-

lem in both string theory and mathematics. The spec-

tacular work of BCOV (Bershadsky, Cecotti, Ooguri

and Vafa) was a major step toward accomplishing this

goal. But many questions remain before we can find a

robust formula for higher genus.
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There are other dualities that appeared in string theory.

Each one of them has given rise to new mathematical

insights into geometry.

About ten years ago, Strominger-Yau-Zaslow, proposed

a new geometric way to understand mirror symmetry,

by viewing it as a duality along special Lagrangian torus

fibrations. At around the same time, Kontsevich pro-

posed his homological mirror conjecture which predicts

that the Fukaya category is isomorphic to the derived

category of the mirror manifolds.
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All these approaches opened up many paths to analyze

the geometry of Calabi-Yau manifolds, and many con-

jectures in mathematics were made and proved based

on these two approaches.

A rather interesting point realized is that the Calabi-Yau

SU(3) structure can be calculable in terms of several

data of the mirror. Another remarkable statement is

that the number and the area of the holomorphic disks

will contribute to build the metric of the mirror mani-

folds.
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Hence for building a geometric structure, not only should

we look for metrics with certain holonomy group, but

we should also study other objects which physicists

called branes. I think gradually, a new concept of geo-

metric structure will emerge out of combining informa-

tion of metrics with special structures, submanifolds of

special structures, and bundles with special structures.

It will take some time to explore all these geometric

structures combine.
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The concept of supersymmetry has played an important

role. Let me give an example.

Many years ago, Strominger was interested to build su-

persymmetric heterotic string models with H-flux. One

needs to analyze the hermitian metric on the manifold

and also the metrics on holomorphic bundles. Both

of them should satisfy supersymmetric conditions. But

they are also linked by an anomaly equation. They can

be written down as the following four equations:
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d(‖ Ω ‖ω ω2) = 0 ,

F2,0 = F0,2 = 0 ,

F ∧ ω2 = 0 ,

√
−1 ∂∂̄ω = α′(trR ∧R− trF ∧ F ) .

These are a natural set of equations. But finding so-

lutions to this set of equations turned out to be diffi-

cult. Only recently, Jun Li-Yau and Fu-Yau were able

to prove the existence of solutions to such equations.
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While it may still be a long way to go to find a ge-

ometry that can incorporate both quantum theory and

general relativity, we have already come across many

interesting questions in geometry along the way. The

idea of studying coupled sets of objects together was

not so popular in geometry. We hope understanding

their structures will lead to new insights.
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The concept of spacetime has been evolving since the

ancient days. The challenge of building a meaningful

quantum geometry certainly will take efforts of all the-

oretical scientists. There is no doubt that the institute

here will be one of the key foundation for such enter-

prise.

49


